Datafeed Toolbox™

User's Guide

R2014b

MATLAB

<} MathWorks

X B

How to Contact MathWorks

Latest news: www . mathworks .com

Sales and services: www.mathworks.com/sales_and_services
User community: www . mathworks .com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Datafeed Toolbox™ User's Guide
© COPYRIGHT 19992014 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails

to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks . com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
December 1999

June 2000
December 2000
February 2003
June 2004
August 2004
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014

First printing
Online only
Online only
Online only
Online only
Online only
Second printing
Online only
Online only
Third printing
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for MATLAB® 5.3 (Release 11)
Revised for Version 1.2

Revised for Version 1.3

Revised for Version 1.4

Revised for Version 1.5 (Release 14)
Revised for Version 1.6 (Release 14+)
Revised for Version 1.7 (Release 14SP3)
Revised for Version 1.8 (Release 2006a)
Revised for Version 1.9 (Release 2006b)
Revised for Version 2.0 (Release 2007a)
Revised for Version 3.0 (Release 2007b)
Revised for Version 3.1 (Release 2008a)
Revised for Version 3.2 (Release 2008b)
Revised for Version 3.3 (Release 2009a)
Revised for Version 3.4 (Release 2009b)
Revised for Version 3.5 (Release 2010a)
Revised for Version 4.0 (Release 2010b)
Revised for Version 4.1 (Release 2011a)
Revised for Version 4.2 (Release 2011b)
Revised for Version 4.3 (Release 2012a)
Revised for Version 4.4 (Release 2012b)
Revised for Version 4.5 (Release 2013a)
Revised for Version 4.6 (Release 2013b)
Revised for Version 4.7 (Release 2014a)
Revised for Version 5.0 (Release 2014b)

Contents

Getting Started

Datafeed Toolbox Product Description 1-2
Key Features i, 1-2
About Data Servers and Data Service Providers 1-3
Supported Data Service Providers 1-3
Data Server Connection Requirements 1-3
Retrieving Current and Historical Data Using Bloomberg . . 1-8

Retrieving Current and Historical Data Using Thomson

Reuters 1-10
Retrieving Historical Data Using FRED 1-13
Retrieving Historical Data Using Haver Analytics 1-15
Retrieving Intraday and Historical Data Using IQFEED . . 1-17
Retrieving Current and Historical Data Using Yahoo! 1-20
Writing and Running Custom Event Handler Functions .. 1-22

Write a Custom Event Handler Function 1-22
Run a Custom Event Handler Function 1-22
Workflow for Custom Event Handler Function 1-23

Communicate with Financial Data Servers

2|

Communicate with Data Providers 2-2

vi

Contents

Comparing Bloomberg Connections 2-3

Data Provider Workflows

3

Connect to Bloomberg 3-2
Retrieve Bloomberg Current Data 3-6
Retrieve Bloomberg Historical Data 3-8
Retrieve Bloomberg Intraday Tick Data 3-10
Retrieve Bloomberg Real-Time Data 3-12
Workflow for Bloomberg 3-14
Retrieve Thomson Reuters Eikon Current Data 3-15
Retrieve Thomson Reuters Eikon Historical Data 3-17
Retrieve Thomson Reuters Eikon Real-Time Data 3-19
Workflow for Thomson Reuters Eikon 3-22

Datafeed Toolbox Graphical User Interface

4

Introduction 4-2
Retrieving Data Using the Datafeed Dialog Box 4-3
Connecting to Data Servers 4-4
Retrieving Data 4-5
Obtain Ticker Symbol with Datafeed Securities Lookup . .. 4-7

Functions — Alphabetical List

S|

vii

Getting Started

“Datafeed Toolbox Product Description” on page 1-2

“About Data Servers and Data Service Providers” on page 1-3

“Retrieving Current and Historical Data Using Bloomberg” on page 1-8
“Retrieving Current and Historical Data Using Thomson Reuters” on page 1-10
“Retrieving Historical Data Using FRED” on page 1-13

“Retrieving Historical Data Using Haver Analytics” on page 1-15

“Retrieving Intraday and Historical Data Using IQFEED” on page 1-17
“Retrieving Current and Historical Data Using Yahoo!” on page 1-20

“Writing and Running Custom Event Handler Functions” on page 1-22

1 Getting Started

Datafeed Toolbox Product Description

1-2

Access financial data from data service providers

Datafeed Toolbox provides access to current, intraday, historical, and real-time market
data from leading financial data providers. By integrating these data feeds into

MATLAB?®, you can perform analyses, develop models, and create visualizations that
reflect current financial and market behaviors. The toolbox also provides functions to
export MATLAB data to some data service providers.

You can establish connections from MATLAB to retrieve historical data or subscribe to
real-time streams from data service providers. With a single function call, the toolbox
lets you customize queries to access all or selected fields from multiple securities over a
specified time period. You can also retrieve intraday tick data for specified intervals and
store it as time series data.

Supported data providers include Bloomberg®, FactSet®, FRED®, Haver Analytics®,
Interactive Data™, IQFEED®, Kx Systems”, Inc., SIX Financial Information, Thomson
Reuters™, and Yahoo!® Finance.

Key Features

* Current, intraday, historical, and real-time market data access
+ Customizable data access by security lists, time periods, and other fields
* Intraday tick data retrieval as a time series

Bloomberg Desktop, B-PIPE®, and Server connectivity

Thomson Reuters Eikon® Desktop, RMDS, Datastream®, NewsScope, and Tick
History connectivity

+ Connectivity to FactSet, Interactive Data, IQFEED, Kx Systems, SIX Financial
Information, Yahoo! Finance, and other financial data providers

+ Haver Analytics and Federal Reserve Economic Data (FRED) economic data support

About Data Servers and Data Service Providers

About Data Servers and Data Service Providers

In this section...

“Supported Data Service Providers” on page 1-3

“Data Server Connection Requirements” on page 1-3

Supported Data Service Providers

This toolbox supports connections to financial data servers that the following
corporations provide:

* Bloomberg L.P. (http://www.bloomberg.com)

eSignal® (http://www.esignal.com)

+ FactSet Research Systems, Inc. (http://www.factset.com)

* Federal Reserve Economic Data (FRED) (http://research.stlouisfed.org/fred2/)
* Haver Analytics (http://www.haver.com)

+ Interactive Data (http://www.interactivedata-prd.com/)

+ IQFEED(http://www.iqfeed.net/)

+ Kx Systems, Inc. (http://www.kx.com)

+ SIX Financial Information (http://www.six-financial-information.com)

* Thomson Reuters (http://www.thomsonreuters.com/)

* Yahoo! (http:/finance.yahoo.com)

See the MathWorks® Web site for the system requirements for connecting to these data
servers.

Data Server Connection Requirements

To connect to some of these data servers, additional requirements apply.

Additional Software Requirements

The following data service providers require you to install proprietary software on your

PC:

1-3

http://www.bloomberg.com
http://www.esignal.com
http://www.factset.com
http://research.stlouisfed.org/fred2/
http://www.haver.com
http://www.interactivedata-prd.com/
http://www.iqfeed.net/
http://www.kx.com
http://www.six-financial-information.com
http://about.reuters.com/
http://finance.yahoo.com
http://www.mathworks.com/products/datafeed/requirements.html

1 Getting Started

1-4

* Bloomberg

Note: You must have a Bloomberg Desktop software license for the host on which the
Datafeed Toolbox and MATLAB software are running.

+ Interactive Data
* Haver Analytics
* Kx Systems, Inc.
Reuters”
- IQFEED

You must have a valid license for required client software on your machine. If you do not,
the following error message appears when you try to connect to a data server:

Invalid MEX-File

For details about how to obtain required software, contact your data server sales
representative.

Proxy Information Requirements

The following data service providers may require you to specify a proxy host and proxy
port plus a user name and password if the user's site requires proxy authentication:

* FactSet

+ FRED

* Thomson Reuters Datastream

* Thomson Reuters Tick History

* Yahoo!

+ IQFEED

For information on how to specify these settings, see “Specify Proxy Server Settings for
Connecting to the Internet”.

FactSet Data Service Requirements

You need a license to use FactSet FAST technology. For details, see the FactSet Web site
at http://www.factset.com.

http://www.factset.com

About Data Servers and Data Service Providers

Reuters Data Service Requirements

Configuring Reuters Connections Using the Reuters Configuration Editor

You must use the Reuters Configuration Editor to configure your connections as follows:

1

Open the Reuters Market Data System configuration editor by typing the following
command:

rmdsconfig

Load the sample configuration file.

a Click File > Import > File.

b Select the file matlabroot\toolbox\datafeed\datafeed
\sampleconfig.xml.

Modify sampleconfig.xml based on the site-specific settings that you obtain from
Reuters.

Define a namespace, a connection, and a session associated with the connection. The
following example adds the session remoteSession with the namespace MyNS to the
connection list for the connection remoteConnection.

I} RFA Condiguration Editor [w
File Edit View Setting Help
o= Systemm =4 Key Walue =
7 Ui M cannectionType |55L
¥ com \@acs_CheEnabled false
- revters dacs_GenerateLocks falsa
v-ia dacs_SbePubEnabled Talze
o _System
¢ M dacs_SheSubEnabled falza
& Conmections downboadDatalict true
& RTICconnection poMNumBer el
= RTICwithDacs serverlist 111.222.333.134
o cenneet usermiame w333

7 Sessions
o= remoteRTICSession
o= pErolESEssion
o remoteRTICwithDacs

[v]

1] | ¥

1-5

1 Getting Started

1-6

=Iofx
File Edit View Setting Help
o= Syrstenn - Ky Value -
7 Users M cannectionList RemoteConnection
7 com
7 reulers
9 ma
o _System
¢ nmNS
7 Connections
& RTlCconnection
= FVconnection
& RemoteConnection
7 Sessions
o= TickByTickSession
remoteSession

[v]

[l »

5 If you are not DACS-enabled, disable DACS.
a Add the following to your connection configuration:

dacs_CbeEnabled=false
dacs_SbePubEnabled=false
dacs_SbeSubEnabled=false

b If you are running an SSL connection, add the following to your connection
configuration:

dacs_GeneratelLocks=false

For details, see the reuters function reference page.

Troubleshooting Issues with Reuters Configuration Editor

These errors occur when you attempt to use the Reuters Configuration Editor to
configure connections on a machine on which an XML Parser is not installed.

jJava com.reuters.rfa.tools.config.editor.ConfigEditor
org.xml.sax.SAXException: System property

org.xml._.sax.driver not specified

at org.xml_sax.helpers.XMLReaderFactory.createXMLReader (Unknown

About Data Servers and Data Service Providers

Source)

at com.reuters.rfa.tools.config.editor._rfaConfigRuleDB.rfaConfi
gRuleDB. java:56)

at com.reuters.rfa.tools.config.editor.ConfigEditor.init
(ConfigEditor.java:86)

at (com.reuters.rfa._tools.config.editor._ConfigEditor.
(ConfigEditor._java:61) at
com.reuters.rfa._tools.config.editor._ConfigEditor_main
(ConfigEditor.java:1303)

To address this problem, download an XML parser file, and then include a path to this
file in your CLASSPATH environment variable.

The following example shows how to set your CLASSPATH environment variable to
include the XML parser file C:\xerces. jar (downloaded from http://xerces.apache.org/
xerces-j/index.html):

set CLASSPATH=%CLASSPATH%; . . .
matlabroot\toolbox\datafeed\datafeed\config_editor.jar;...
c:\xerces.jar

Thomson Reuters Data Service Requirements

You need the following to connect to Thomson Reuters data servers:

A license for Thomson Reuters Datastream DataWorks®.

+ To connect to the Thomson Reuters Datastream API from the Web, you need a user
name, password, and URL provided by Thomson Reuters.

For details, see the Thomson Reuters Web site at http://www.thomsonreuters.com.

http://xerces.apache.org/xerces-j/index.html
http://xerces.apache.org/xerces-j/index.html
http://www.thomson.com

1 Getting Started

Retrieving Current and Historical Data Using Bloomberg

1-8

This example shows how to connect to Bloomberg and retrieve current and historical
Bloomberg market data.

Connect to Bloomberg
c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Retrieve Current Data

Retrieve closing and open prices for Microsoft®.

sec = "MSFT US Equity”;
fields = {"LAST_PRICE";"OPEN"}; % closing and open prices

[d,sec] = getdata(c,sec,fields)
d =

LAST_PRICE: 36.95
OPEN: 36.94

sec =
MSFT US Equity

d contains the Bloomberg closing and open prices. sec contains the Bloomberg security
name for Microsoft.

Retrieve Historical Data

Retrieve monthly closing and open price data from January 1, 2012 through December
31, 2012 for Microsoft.

fromdate = "1/01/2012%; % beginning of date range for historical data
todate = "12/31/2012%; % ending of date range for historical data
period = "monthly"; % retrieve monthly data

[d,sec] = history(c,sec,fields,fromdate,todate,period)

Retrieving Current and Historical Data Using Bloomberg

d =
734899.00 27.87 25.06
734928.00 30.16 28.12
734959 .00 30.65 30.34
sec =

MSFT US Equity

d contains the numeric representation of the date in the first column, closing price in

the second column, and open price in the third column. Each row represents data for one

month in the date range. sec contains the Bloomberg security name for Microsoft.

Close the Bloomberg Connection

close(c)

See Also
blp | close | getdata | history

1 Getting Started

Retrieving Current and Historical Data Using Thomson Reuters

1-10

This example shows how to connect to the Reuters Market Data System (RMDS) and
retrieve current and historical Thomson Reuters market data.

Connect to Thomson Reuters

Connect to Thomson Reuters using a delayed connection specified by *dIDN_RDF". This
connection type lets you retrieve current data.

c = reuters("myNS: :remoteSession”, "dIDN_RDF*");
Retrieve Current Data

Retrieve current data for Google®.

sec = "GO0G.0";

d

fetch(c,sec)
d =

PROD_PERM: 74.00
RDNDISPLAY: 66.00
DSPLY_NAME: "DELAYED-15GOOGLE*

d contains a large number of Thomson Reuters market data fields. This output shows
the product permissions information, PROD PERM, the display information for the IDN
terminal device, RONDISPLAY, and the expanded name for the instrument, DSPLY_NAME.
sec contains the Thomson Reuters security name for Google.

Close the Thomson Reuters connection.
close(c)
Retrieve Historical Data

Connect to Thomson Reuters using a connection that is not delayed as specified by
" IDN_RDF". This connection type lets you retrieve historical data.

c = reuters("myNS: :remoteSession”, " IDN_RDF");

Retrieve monthly market data from June 1, 2012 through December 31, 2012 for Google.

Retrieving Current and Historical Data Using Thomson Reuters

fromdate = "06/01/2012"; % beginning of date range for historical data

todate = "12/31/20127; % ending of date range for historical data
period = "m"; % monthly period for data

d history(c,sec,fromdate, todate,period)

d =

DATE: [7x1 double]
CLOSE: [7x1 double]
OPEN: [7x1 double]
HIGH: [7x1 double]

LOW: [7x1 double]
VOLUME: [7x1 double]
VWAP: [7x1 double]
BLOCK_VOL: [7x1 double]
ASK: [7x1 double]

BID: [7x1 double]

d is a structure with the following fields:

+ Date

* Closing price

* Open price

* High price

* Low price

* Volume

* Volume weighted average price (VWAP)
* Block volume

+ Ask price

+ Bid price

For this example, the structure fields contain market data from June through December.

Display the open price.
d.OPEN
ans =

702.24

1-11

1 Getting Started

1-12

679.50
759.05

Close the Thomson Reuters Connection

close(c)

See Also

close | fetch | history | reuters

Retrieving Historical Data Using FRED

Retrieving Historical Data Using FRED

This example shows how to connect to FRED and retrieve historical data.
Connect to FRED

c = fred;

Retrieve All Historical Data

Retrieve all historical data for the U.S. / Euro Foreign Exchange Rate series.

series = "DEXUSEU";

d = fetch(c,series)

d =
Title: " U.S. / Euro Foreign Exchange Rate*®
SerieslID: " DEXUSEU®
Source: " Board of Governors of the Federal Reserve System®
Release: " H.10 Foreign Exchange Rates®
SeasonalAdjustment: * Not Seasonally Adjusted*
Frequency: * Daily*
Units: * U.S. Dollars to One Euro*

DateRange: " 1999-01-04 to 2013-12-13*
LastUpdated: * 2013-12-16 4:51 PM CST*
Notes: *
Data: [3900x2 double]

d contains the series description.

Display the numeric representation of the date and the foreign exchange rate.

d.Data

ans =
730124 .00 1.18
730125.00 1.18
730126.00 1.16

Retrieve Historical Data for a Date Range

Retrieve historical data from January 1, 2012 through June 1, 2012 for the U.S. / Euro
Foreign Exchange Rate series.

fromdate = "01/01/2012"; % beginning of date range for historical data

1-13

Noon buying rates in New York City for cable transfers payable in foreign currencies.”

1 Getting Started

todate = "06/01/2012%; % ending of date range for historical data
d = fetch(c,series,fromdate, todate);

Close the FRED Connection

close(c)

See Also

close | fetch | fred

1-14

Retrieving Historical Data Using Haver Analytics

Retrieving Historical Data Using Haver Analytics

This example shows how to connect to Haver Analytics and retrieve historical data.
Connect to Haver Analytics

Connect to Haver Analytics using a daily file.

c = haver("c:\work\haver\haverd.dat®);

Retrieve All Historical Data

Retrieve all historical data for the Haver Analytics variable FFED. The descriptor for this
variable is Federal Funds [Effective] Rate (% p.a.).

variable = "FFED"; % return data for FFED
d = fetch(c,variable);

Display the first three rows of data.

d(1:3,:)

ans =
715511 .00 2.38
715512 .00 2.50
715515.00 2.50

d contains the numeric representation of the date and the closing value.
Retrieve Historical Data for a Date Range
Retrieve historical data from January 1, 2005 through December 31, 2005 for FFED.

fromdate = "01/01/2005"; % beginning of date range for historical data
todate = "12/31/2005%; % ending of date range for historical data

d = fetch(c,variable,fromdate,todate);

Close the Haver Analytics Connection

close(c)

1-15

1 Getting Started

Open the Haver Analytics User Interface

Use the havertool function to open the Haver Analytics User Interface. You can
observe different Haver Analytics variables in a chart format.

c = haver("c:\work\haver\haverd.dat®);
havertool (c)

For details, see the havertool function.

See Also

close | fetch | haver | havertool

1-16

Retrieving Intraday and Historical Data Using IQFEED

Retrieving Intraday and Historical Data Using IQFEED

This example shows how to connect to IQFEED and retrieve intraday and historical data.

Connect to IQFEED

The following code assumes you are connecting to IQFEED using the user name
username and password pwd.

c = igf(Cusername”, "pwd");

Retrieve Intraday Data

Retrieve today’s intraday data for IBM®.
sec = "IBM";
fromdate = now-0.05; % beginning of date range for intraday data

% (approximately one hour ago)
todate = now; % ending of date range for intraday data (current time today)

timeseries(c,sec,{fromdate, todate})

timeseries creates the workspace variable 1QFeedTimeseriesData and populates it
with the intraday data. sec contains the IQFEED security name for IBM.

Display the first three rows of intraday data.

IQFeedTimeseriesData(1:3,:)

ans =

"2013-12-19 10:09:15" "179.5750" "100* "1155752" "179.5700" ®179.6100"° "219184* "0*
"2013-12-19 10:09:15" "179.5700" "100* "1155652" "179.5700" "179.6100"° "219177* "0*
"2013-12-19 10:09:15" "179.5844* "1345* "1155552" "179.5700" "179.6100"° "219176* "0*

The columns in 1QFeedTimeseriesData are:

* Timestamp.

+ Last price.

+ Last size.

+ Total volume.
* Bid price.

+ Ask price.

1-17

1 Getting Started

* Tick identifier.

* The last column is the basis for last trade.

The remaining two columns are reserved for later use by the IQFEED API.
Close the IQFEED connection.

close(c)

Retrieve Historical Data

Connect to IQFEED.

c = igf("username”, "pwd");

Retrieve the last five weeks of historical data for IBM.

interval = 5; % number of weeks to return data
period = “Weekly®; % retrieve weekly data

history(c,sec, interval ,period)

history creates the workspace variable IQFeedHistoryData and populates it with the
historical data.

Display the first three rows of historical weekly data.

IQFeedHistoryData(1:3,:)

ans =

"2013-12-18 10:11:32* "178.7400" "172.7300" "173.2200" "178.7000" "18695843" "0*
"2013-12-13 10:11:32* ®178.1520*° ®172.7300" "177.9900" "172.8000" "21871929*° "0*
"2013-12-06 10:11:32* ®179.5900*" ®175.1600"° *179.4600" "177.6700" "24819146" "0*

Each row of data represents the last day of a week. The first row contains data for the
last business day in the current week. The columns in 1QFeedHistoryData contain the
following:

* Date and time

* High price

* Low price

* Open price

* Closing price

1-18

Retrieving Intraday and Historical Data Using IQFEED

* Volume

* Open interest
Close the IQFEED Connection
close(c)

See Also

close | history | igf | timeseries

1-19

1 Getting Started

Retrieving Current and Historical Data Using Yahoo!

1-20

This example shows how to connect to Yahoo! and retrieve current and historical data.
Connect to Yahoo!

c = yahoo;

Retrieve Current Data

Retrieve data for IBM on January 3, 2014.

sec = "IBM";
sdate = "01/03/2014"; % retrieve data for a single date

d = fetch(c,sec,sdate)
d =

735584.00 173.22 178.35 172.73 177.85 7517000.00 177.85

d contains the numeric representation of the date, open price, high price, low price,
closing price, volume, and adjusted closing price. sec contains the Yahoo! security name
for IBM.

Retrieve Historical Data

Retrieve the closing prices from January 1, 2012 through June 30, 2012 for IBM.

field = "Close”™; % retrieve closing price data

fromdate = "01/01/2012"; % beginning of date range for historical data
todate = "06/30/2012; % ending of date range for historical data

d = fetch(c,sec, field, fromdate,todate);

Display the first three rows of data.

d(1:3,:)

ans =
735049.00 195.58
735048.00 191.40
735047 .00 193.00

d contains the numeric representation of the date in the first column and the closing
price in the second column.

Retrieving Current and Historical Data Using Yahoo!

Close the Yahoo! Connection

close(c)

See Also

close | fetch | yahoo

1-21

1 Getting Started

Writing and Running Custom Event Handler Functions

In this section...

“Write a Custom Event Handler Function” on page 1-22
“Run a Custom Event Handler Function” on page 1-22

“Workflow for Custom Event Handler Function” on page 1-23

Write a Custom Event Handler Function

You can process events related to any data updates by writing a custom event handler
function for use with Datafeed Toolbox. For example, you can monitor prices before
creating an order or plot interval data in a graph. Follow these basic steps to write a
custom event handler.

Choose the events you want to process, monitor, or evaluate.

Decide how the custom event handler processes these events.

Determine the input and output arguments for the custom event handler function.

AW N —

Write the code for the custom event handler function.

For details, see “Create Functions in Files”. For a code example of a Bloomberg event
handler function, see v3stockticker.

Run a Custom Event Handler Function

You can run the custom event handler function by passing the function name as an input
argument into an existing function. For Thomson Reuters RMDS function fetch, specify
the custom event handler as a string. For other functions, specify the custom event
handler function name either as a string or function handle. For details about function
handles, see “What Is a Function Handle?”

For example, suppose you want to retrieve real-time data from Bloomberg using

real time with the custom event handler function named eventhandler. You can

use either of these syntaxes to run eventhandler. This code assumes a Bloomberg
connection C, security list s, Bloomberg data fields ¥, Bloomberg subscription subs, and
MATLAB timer t.

Use a string.

1-22

Writing and Running Custom Event Handler Functions

[subs,t] = realtime(c,s,f, eventhandler®);

Or, use a function handle.

[subs,t] = realtime(c,s,f,@eventhandler);

Workflow for Custom Event Handler Function

This workflow summarizes the basic steps to work with a custom event handler function
for any of the data service providers.

A WN -

6

Write a custom event handler function and save it to a file.
Create a connection to the data service provider.
Subscribe to a specific security using an existing function or API syntax.

Run an existing function to receive data updates and use the custom event handler
function as an input argument.

Stop data updates by using stop or closing the connection to the data service
provider.

Close the connection to the data service provider if the connection is still open.

See Also

fetch | realtime

More About

“Create Functions in Files”
“What Is a Function Handle?”

1-23

1-24

Communicate with Financial Data
Servers

+ “Communicate with Data Providers” on page 2-2

+ “Comparing Bloomberg Connections” on page 2-3

2 Communicate with Financial Data Servers

Communicate with Data Providers

Datafeed Toolbox supports connection to these data providers. This table lists the

connection functions for each data provider. Start with these functions to communicate

with your data service provider.

Data Provider

Function

Bloomberg blp, blpsrv, or bpipe
eSignal esig

FactSet factset or fds

FRED fred

Haver Analytics haver

Interactive Data idc

IQFEED igf

Kx Systems, Inc. kx

SIX Financial Information thkrs

Thomson Reuters

datastream, reuters, or treikon

Yahoo!

yahoo

2-2

Comparing Bloomberg Connections

Comparing Bloomberg Connections

Datafeed Toolbox uses three different Bloomberg services to connect to Bloomberg. Use
this table to learn about the functions for establishing each connection and the data
access functionality of each service.

You need a valid Bloomberg license to work with each Bloomberg service.

Bloomberg Service

Bloomberg Desktop

Bloomberg Server

Bloomberg B-PIPE

Functions

blp

blpsrv

bpipe

Data access

Lets applications
obtain data from
the Bloomberg
Data Center by
connecting locally
to the Bloomberg
Communications
Server

Lets applications
obtain data from
the Bloomberg Data
Center using a
dedicated process

to optimize network
resources

Allows entitled

users to access
permission data from
the Bloomberg Data
Center by connecting
to the Bloomberg
Appliance

Each function has a different syntax for creating a Bloomberg connection. The connection
objects created by running these functions have different properties. For details, see the
respective function reference page.

For details about these services, see the Bloomberg API Developer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

2-3

2-4

Data Provider Workflows

3 Data Provider Workflows

Connect to Bloomberg

This example shows how to create a connection to Bloomberg using the three Bloomberg
services: Bloomberg Desktop, Bloomberg Server, and B-PIPE.

Create the Bloomberg Desktop Connection
c = blp
CcC =
blp with properties:
session: [1x1 com.bloomberglp.blpapi.Session]
ipaddress: "localhost”

port: 8194
timeout: O

blp creates a Bloomberg connection object ¢ and returns its properties.
Validate the connection c.
v = isconnection(c)
v =
1
Vv returns true showing that the Bloomberg connection is valid.

Retrieve the Bloomberg Desktop connection properties.

v = get(c)

VvV =

session: [1x1 com.bloomberglp.blpapi.Session]
ipaddress: "localhost*
port: 8194
timeout: O

V is a structure containing the Bloomberg session object, IP address, port number, and
timeout value.

Close the Bloomberg Desktop connection.

close(c)

Connect o Bloomberg

Create the Bloomberg Server Connection

Connect to the Bloomberg Server using the IP addresses of the machine running the
Bloomberg Server. This code assumes the following:

* The Bloomberg UUID is 12345678.

* The IP address serverip for the machine running the Bloomberg Server is
"111.11.211.121".

uuid = 12345678;
serverip = "111.11.11.111";

c = blpsrv(uuid,serverip)

CcC =
blpsrv with properties:

uuid: 12345678
user: [1x1 com.bloomberglp.blpapi.impl.aT]
session: [1x1 com.bloomberglp.blpapi.Session]
ipaddress: "111.11.11.111°
port: 8195
timeout: O

bIpsrv connects to the machine running the Bloomberg Server on the default port
number 8195. blpsrv creates the Bloomberg Server connection object C.

Close the Bloomberg Server connection.

close(c)
Create the B-PIPE Connection

Create a Bloomberg B-PIPE connection using the IP address of the machine running the
Bloomberg B-PIPE process. This code assumes the following:

The authentication is Windows® Authentication by setting authorizationtype to
"0OS_LOGON*™.

* The application name is blank because you are not connecting to Bloomberg B-PIPE
using an application.

* The IP address serverip for the machine running the Bloomberg B-PIPE process is
"111.11.11.112".

3-3

3 Data Provider Workflows

3-4

* The port number is 8194.

authorizationtype = "0S_LOGON";
applicationname = ""°;

serverip = {"111.11.11.112"};
portnumber = 8194;

c bpipe(authorizationtype,applicationname,serverip,portnumber)
CcC =

bpipe with properties:

appauthtype: °*
authtype: "0S_LOGON*
appname: [1

user: [1x1 com.bloomberglp.blpapi.impl.aT]
session: [1x1 com.bloomberglp.blpapi.Session]
ipaddress: {"111.11.11.112"}
port: 8194.00
timeout: O

bpipe connects to Bloomberg B-PIPE at the port number 8194. bpipe creates the
Bloomberg B-PIPE connection object C.

Close the B-PIPE connection.

close(c)

See Also

blp | blpsrv | bpipe | close | get | isconnection

Related Examples

. “Retrieve Bloomberg Current Data” on page 3-6

. “Retrieve Bloomberg Historical Data” on page 3-8

. “Retrieve Bloomberg Intraday Tick Data” on page 3-10
. “Retrieve Bloomberg Real-Time Data” on page 3-12

More About

. “Comparing Bloomberg Connections” on page 2-3

Connect o Bloomberg

“Workflow for Bloomberg” on page 3-14

3-5

3 Data Provider Workflows

Retrieve Bloomberg Current Data

3-6

This example shows how to retrieve current data from Bloomberg.
Connect to Bloomberg.
c = blp;

Alternatively, you can connect to the Bloomberg Server API using bIpsrv or Bloomberg
B-PIPE using bpipe.

Retrieve last and open prices for Microsoft.

sec = "MSFT US Equity";
fields = {"LAST_PRICE";"OPEN"}; % Retrieve data for last and open prices

[d,sec] = getdata(c,sec,fields)
d =

LAST_PRICE: 36.95
OPEN: 36.94

sec =
MSFT US Equity

d contains the Bloomberg last and open prices. sec contains the Bloomberg security
name for Microsoft.

Close the Bloomberg connection.

close(c)

See Also
blp | close | getdata

Related Examples
. “Connect to Bloomberg” on page 3-2
. “Retrieve Bloomberg Historical Data” on page 3-8

. “Retrieve Bloomberg Intraday Tick Data” on page 3-10

Retrieve Bloomberg Current Data

. “Retrieve Bloomberg Real-Time Data” on page 3-12

More About
. “Workflow for Bloomberg” on page 3-14

3-7

3 Data Provider Workflows

Retrieve Bloomberg Historical Data

This example shows how to retrieve historical data from Bloomberg.

Connect to Bloomberg.
c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Retrieve monthly closing and open price data from January 1, 2012 through December
31, 2012 for Microsoft.

sec = "MSFT US Equity"~;

fields = {"LAST_PRICE";"OPEN"}; % Retrieve data for closing and open prices
fromdate = "1/01/2012"; % Start of date range for historical data

todate = "12/31/2012%; % End of date range for historical data

period = "monthly”; % Retrieve monthly data

[d,sec] = history(c,sec,fields,fromdate,todate,period)

d =
734899.00 27.87 25.06
734928.00 30.16 28.12
734959.00 30.65 30.34
Sec =

MSFT US Equity

d contains the numeric representation of the date in the first column, closing price in
the second column, and open price in the third column. Each row represents data for one
month in the date range. sec contains the Bloomberg security name for Microsoft.

Close the Bloomberg connection.

close(c)

See Also

blp | close | history

Retrieve Bloomberg Historical Data

Related Examples

. “Connect to Bloomberg” on page 3-2

“Retrieve Bloomberg Current Data” on page 3-6

“Retrieve Bloomberg Intraday Tick Data” on page 3-10
. “Retrieve Bloomberg Real-Time Data” on page 3-12

More About

“Workflow for Bloomberg” on page 3-14

3-9

3 Data Provider Workflows

Retrieve Bloomberg Intraday Tick Data

3-10

This example shows how to retrieve intraday tick data from Bloomberg.

Create the Bloomberg connection.
c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Retrieve the trade tick series for the past 50 days for the IBM security aggregated into 5-
minute intervals.

d = timeseries(c, "IBM US Equity”,{floor(now)-50,Floor(now)},5, " Trade")

ans =

Columns 1 through 7

735487 .40 187.20 187.60 187.02 187.08 207683.00 560.00

735487 .40 187.03 187.13 186.65 186.78 46990.00 349.00

735487 .40 186.78 186.78 186.40 186.47 51589.00 399.00
Column 8

38902968.00
8779374.00
9626896 .00

The columns in d contain the following:

* Numeric representation of date and time
* Open price

+ High price

* Low price

+ Closing price

* Volume of ticks

* Number of ticks

* Total tick value in the bar

The first row of data shows that on today’s date the open price is $187.20, the high price
is $187.60, the low price is $187.02, the closing price is $187.08, the volume of ticks is

Retrieve Bloomberg Intraday Tick Data

207,683, the number of ticks 1s 560, and the total tick value in the bar 1s $38,902,968.
The next row shows tick data for 5 minutes later.

Close the Bloomberg connection.

close(c)

See Also

blp | close | timeseries

Related Examples

. “Connect to Bloomberg” on page 3-2

. “Retrieve Bloomberg Current Data” on page 3-6

. “Retrieve Bloomberg Historical Data” on page 3-8

. “Retrieve Bloomberg Real-Time Data” on page 3-12

More About
. “Workflow for Bloomberg” on page 3-14

3-11

3 Data Provider Workflows

Retrieve Bloomberg Real-Time Data

3-12

This example shows how to retrieve real-time data from Bloomberg. You can create your
own event handler function to process Bloomberg data. For this example, use the event
handler v3stockticker to return Bloomberg stock tick data.

Create the Bloomberg connection.
c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Retrieve the last trade and volume for IBM and Ford Motor Company® securities.

v3stockticker requires the input argument f of realtime to be "Last_Trade",
"Volume®, or both.

[subs,t] = realtime(c,{"IBM US Equity","F US Equity"}, ...
{"Last_Trade", "Volume"}, "v3stockticker™)

subs =

com.bloomberglp.blpapi.SubscriptionList@6cl1066f6

Timer Object: timer-3

Timer Settings
ExecutionMode: fixedRate
Period: 0.05
BusyMode: drop
Running: on

Callbacks
TimerFcn: 1x4 cell array
ErrorFcn: **
StartFcn: **
StopFcn: **

** IBM US Equity ** 32433 @ 181.85 29-0ct-2013 15:50:05
** IBM US Equity ** 200 @ 181.85 29-0Oct-2013 15:50:05
** IBM US Equity ** 100 @ 181.86 29-Oct-2013 15:50:05

Refrieve Bloomberg Real-Time Data

** F US Equity ** 300
** F US Equity ** 100
** F US Equity ** 100

17.575 30-0ct-2013 10:14:06
17.57 30-0ct-2013 10:14:06
17.5725 30-0ct-2013 10:14:06

[SE=E)

real time returns the Bloomberg subscription list object subs and the MATLAB timer
object with its properties. Then, realtime returns the stock tick data for the IBM and
Ford Motor Company securities with the last trade price and volume.

Real-time data continues to display until you use the stop or close function.
Close the Bloomberg connection.
close(c)

See Also

blp | close | realtime | stop

Related Examples

. “Connect to Bloomberg” on page 3-2

. “Retrieve Bloomberg Current Data” on page 3-6

. “Retrieve Bloomberg Historical Data” on page 3-8

. “Retrieve Bloomberg Intraday Tick Data” on page 3-10

More About
. “Workflow for Bloomberg” on page 3-14

. “Writing and Running Custom Event Handler Functions” on page 1-22

3-13

3 Data Provider Workflows

Workflow for Bloomberg

You can use Bloomberg to monitor market price information.
To request current, historical, intraday tick, and real-time data:

1 Connect to Bloomberg using blp, blpsrv, or bpipe. Ensure a successful Bloomberg
connection by using isconnection. Request properties of the connection objects
using get.

2 Look up information about securities, curves, or government securities using
lookup. Request Bloomberg field information using category, fieldinfo, or
Tieldsearch.

3 Request current data for a security using getdata. Request bulk data with header
information using getbulkdata.

Request equity screening data using eqgs.

Request historical data for a security using history.
Request historical technical analysis using tahistory.
Request intraday tick data for a security using timeseries.

©© N O O

Request real-time data for a security using realtime. Stop real-time data updates
using stop.

9 Close the Bloomberg connection by using close.

Related Examples

. “Connect to Bloomberg” on page 3-2

. “Retrieve Bloomberg Current Data” on page 3-6

. “Retrieve Bloomberg Historical Data” on page 3-8

. “Retrieve Bloomberg Intraday Tick Data” on page 3-10
. “Retrieve Bloomberg Real-Time Data” on page 3-12

More About

. “Comparing Bloomberg Connections” on page 2-3

3-14

Retrieve Thomson Reuters Eikon Current Data

Retrieve Thomson Reuters Eikon Current Data

This example shows how to connect to Thomson Reuters Eikon and retrieve current data.
Connect to Thomson Reuters Eikon

Create a Thomson Reuters Eikon connection c.

c = treikon;

c.DataAPIClass.add_OnStatusChanged(@trestatuseventhandler)
c.DataAPIClass.Status
c
c

.DataAPIClass.Initialize
.Source = "IDN";

ans =
Disconnected
ans =
Succeed

ans =
Connected

MATLAB connects to Thomson Reuters Eikon when the Command Window displays this
message: Connected.

Retrieve Current Data

Retrieve last price and bid price data for Google.

s = "G00G.0*;
fields = {"LAST","BID"}; % Last price and bid price fields

d = getdata(c,s,fields)
ans =

GO0OG.0

3-15

3 Data Provider Workflows

LAST: {[1119.77]}
BID: {[1119.41]}

getdata returns d as a structure containing the field LAST with the last price $1119.77
and the field BID with the bid price $1119.41 for Google.

Close the Thomson Reuters Eikon Connection

To close the Thomson Reuters Eikon connection, exit MATLAB.

See Also

getdata | treikon

Related Examples

. “Retrieve Thomson Reuters Eikon Historical Data” on page 3-17

. “Retrieve Thomson Reuters Eikon Real-Time Data” on page 3-19

More About

. “Workflow for Thomson Reuters Eikon” on page 3-22

3-16

Retrieve Thomson Reuters Eikon Historical Data

Retrieve Thomson Reuters Eikon Historical Data

This example shows how to connect to Thomson Reuters Eikon and retrieve historical
data.

Connect to Thomson Reuters Eikon

Create a Thomson Reuters Eikon connection c.

= treikon;
-DataAPIClass.add_OnStatusChanged(@trestatuseventhandler)
-DataAPIClass.Status

_DataAPIClass.Initialize

.Source = "IDN";

O000O0

ans =
Disconnected
ans =
Succeed

ans =
Connected

MATLAB connects to Thomson Reuters Eikon when the Command Window displays this
message: Connected.

Retrieve Historical Data

Retrieve the weekly open, high, low, and close prices for Apple. Retrieve data for the last
30 days.

s = "AAPL.O";

fields = {"DATE","OPEN", "HIGH", "LOW", "CLOSE"};

startdate = floor(now)-30; % Beginning of date range as of 30 days ago

enddate = floor(now); % End of date range as of today
period = "W"; % Weekly periodicity

d = history(c,s,fields,startdate,enddate,period)

d =

3-17

3 Data Provider Workflows

3-18

"4/4/2014 12:00:0..." [539.23] [543.48] [530.58] [531.82]
"3/28/2014 12:00:..." [538.42] [549.00] [534.25] [536.86]
"3/21/2014 12:00:..." [527.70] [536.24] [525.20] [532.87]
*3/14/2014 12:00:..." [528.36] [539.66] [523.00] [524.69]

d is a cell array that contains five columns:

* Date and time
* Open price

* High price

* Low price

+ Close price

Each row represents one week of data. The total number of rows equals the number of
weeks in the requested date range.

Close the Thomson Reuters Eikon Connection

To close the Thomson Reuters Eikon connection, exit MATLAB.

See Also

history | treikon

Related Examples

. “Retrieve Thomson Reuters Eikon Current Data” on page 3-15
. “Retrieve Thomson Reuters Eikon Real-Time Data” on page 3-19
More About

. “Workflow for Thomson Reuters Eikon” on page 3-22

Retrieve Thomson Reuters Eikon Real-Time Data

Retrieve Thomson Reuters Eikon Real-Time Data

This example shows how to connect to Thomson Reuters Eikon, retrieve real-time data,
stop real-time data retrieval, and resume real-time data retrieval.

Connect to Thomson Reuters Eikon

Create a Thomson Reuters Eikon connection c.

= treikon;
-DataAPIClass.add_OnStatusChanged(@trestatuseventhandler)
-DataAPIClass.Status

-DataAPIClass. Initialize

.Source = "“IDN";

O0O00O0

ans =
Disconnected
ans =
Succeed

ans =
Connected

MATLAB connects to Thomson Reuters Eikon when the Command Window displays this
message: Connected.

Retrieve Real-Time Data

Retrieve real-time data for the last price and bid price for Google. The sample event
handler trerealtimeeventhandler retrieves the real-time data to put into the
MATLAB variable trReal timeData in the Workspace browser.

s = "G00G.0";
fields = {"LAST","BID"};

subs realtime(c,s, fields,@(varargin)trerealtimeeventhandler(varargin{:}))

subs

AdXRtLisStCOMObj: [1x1 System.__ComObject]
AdxRtListObj: [1x1 ThomsonReuters. Interop.RTX.AdxRtListClass]

3-19

3 Data Provider Workflows

3-20

Items: {"GOOG.0"}
Fields: {"LAST" "BID"}
UpdateMode: [1x1 ThomsonReuters.Interop.RTX.RT_RunMode]

subs is a subscription structure that contains the security list in the field 1tems. subs
contains the Thomson Reuters Eikon field list in the structure field Fields.

Display the real-time data for Google by accessing the contents of the variable
trRealtimeData in the Workspace browser.

trRealtimeData

trRealtimeData =

RIC: "GO0OG.O*
LAST: 561.26
BID: 561.16

The variable trRealtimeData is a structure that contains real-time data.
trRealtimeData contains the Thomson Reuters Eikon Reuters Instrument Code (RIC)
in the structure field RIC. This structure contains any requested Thomson Reuters
Eikon fields as structure fields. For example, trRealtimeData contains the last price of
$561.26 for Google in the structure field LAST.

Stop Real-Time Data Retrieval

To stop real-time data retrieval, use the stop function with the subscription structure
subs.

stop(c,subs)
Resume Real-Time Data Retrieval

To resume real-time data retrieval, use the start function with the subscription
structure subs.

start(c,subs)
Close the Thomson Reuters Eikon Connection
To close the Thomson Reuters Eikon connection, exit MATLAB.

See Also

realtime | start | stop | treikon

Retrieve Thomson Reuters Eikon Real-Time Data

Related Examples

“Retrieve Thomson Reuters Eikon Current Data” on page 3-15

“Retrieve Thomson Reuters Eikon Historical Data” on page 3-17

More About

“Workflow for Thomson Reuters Eikon” on page 3-22

“Writing and Running Custom Event Handler Functions” on page 1-22

3-21

3 Data Provider Workflows

Workflow for Thomson Reuters Eikon

You can use Thomson Reuters Eikon to monitor market price information.
To request current, historical, or real-time data:

Connect to Thomson Reuters Eikon using treikon.

Retrieve current data for a security using getdata.

Retrieve historical data for a security using history.
Retrieve real-time data for a security using realtime.

Start and stop real-time data updates using start and stop.

Retrieve chain data for a security using chain.

NO O h WD —

Close the Thomson Reuters Eikon connection by exiting MATLAB.

Related Examples

. “Retrieve Thomson Reuters Eikon Current Data” on page 3-15
. “Retrieve Thomson Reuters Eikon Historical Data” on page 3-17
. “Retrieve Thomson Reuters Eikon Real-Time Data” on page 3-19

3-22

Datafeed Toolbox Graphical User
Interface

* “Introduction” on page 4-2
+ “Retrieving Data Using the Datafeed Dialog Box” on page 4-3
* “Obtain Ticker Symbol with Datafeed Securities Lookup” on page 4-7

4 Datafeed Toolbox Graphical User Interface

Introduction

You can use the Datafeed Toolbox Graphical User Interface (GUI) to connect to and
retrieve information from some supported data service providers.

This GUI consists of two dialog boxes:

* The Datafeed dialog box

The Securities Lookup dialog box

4-2

Retrieving Data Using the Datafeed Dialog Box

Retrieving Data Using the Datafeed Dialog Box

The Datafeed dialog box establishes the connection with the data server and manages
data retrieval. Use this dialog box to connect to and retrieve data from Yahoo!

To open this dialog box, enter the dftool command in the MATLAB Command Window.

The Datafeed dialog box has two tabs:

*+ The Connection tab establishes communication with a data server. For details, see
“Connecting to Data Servers” on page 4-4.

+ The Data tab specifies the data request. For details, see “Retrieving Data” on page
4-5.

The following figure summarizes how to connect to data servers and retrieve data using
the Datafeed dialog box.

4-3

4 Datafeed Toolbox Graphical User Interface

4. After the connection is made,

click the Data tab to begin
data retrieval. 3. Click to establish a connection to the data server.

=10l x|

<) Datafeed

Connection |

Data Source: l Connection History:

lYahoo 14:55:51 - Connect to Yahoo. N
conn = yahoo,

Port Number:

’.Ising default port

IP Address:

’.Ising default IP Address

Current Connections:

ﬂ Disconnect I
Status: Ll
lConnected: Yahoo Clear I

Help I Close |

5. Click to close the highlighted connection.

2. Enter IP address of data server or use the default
values (Bloomberg data servers only).

1. Enter port number on data server (Bloomberg data
servers only).

The Datafeed Dialog Box

Connecting to Data Servers

4-4

Retrieving Data Using the Datafeed Dialog Box

Click the Connect button to establish a connection.

When the Connected message appears in the Status field, click the Data tab to
begin the process of retrieving data from the data server. For details, see “Retrieving
Data” on page 4-5.

Click the Disconnect button to terminate the session highlighted in the Current
Connections box.

For Bloomberg data servers, you must also specify the port number and IP address of the
server:

Enter the port number on the data server in the Port Number field.
Enter the IP address of the data server in the IP Address field.

To establish a connection to the Bloomberg data server, follow steps 1 through 3 in
the previous procedure.

Tip You can also connect to the Bloomberg data server by clicking the Connect
button and accepting the default values.

Retrieving Data

The Data tab lets you retrieve data from the data server as follows:

4

Enter the security symbol in the Enter Security field.
Indicate the type of data to retrieve in the Data Selection field.
Specify whether you want the default set of data or the full set:

* Click the Default fields button for the default set of data.
* Click the All fields button for the full set of data.
Click the Get Data button to retrieve the data from the data server.

The following figure summarizes these steps.

4-5

4 Datafeed Toolbox Graphical User Interface

2. Enter security symbol if known,
or click Add button to add

2a. Use to find security symbol, if unknown.

(For Bloomberg and

Interactive Data Pricing and Reference Data

security to Selected Securities list. data servers only) Security fields.
) Datafi -0 x|
Connection | Data |
Enter Security: Choose Market: Data Selection:
|Equity/ j (+ Current (¢ Default Figlds ¢ Al Fields
= Stz TTets After_Hours_Change_Real_tim
ookup Intraday Ticks . - -]
Add | Logiy | Ollifatziy Annualized_Gain :I
e 010907 Ask
Selected Securities: : ask_Real_time
'v' Ask_Size
) Average_Daily_Volume
(" History Bid
LI From Date: I Bid_Real_time
Bid_Size
Load.. | Save.. | Delete I WlEE I Book_Value -
Period: daily v » |

Current Connections:

Yahoo

Status:

=

=

MATLAE variable: 'bmda’(a
4

Chance
A

Override |

Averdge Daily Volume =
[

lConnected: Yahoo

6303410

Help |

/
/

7

/

Variable in MATLAB
workspace.

4-6

Data retrieved
from the connection.

1. Click to retrieve data.

Obtain Ticker Symbol with Datafeed Securities Lookup

Obtain Ticker Symbol with Datafeed Securities Lookup

When requesting data from Bloomberg or Interactive Data servers, you can use the
Datafeed Securities Lookup dialog box to obtain the ticker symbol for a given security if
you know only part of the security name.

1

Click the Lookup button on the Datafeed dialog box Data tab. The Securities
Lookup dialog box opens.

Specify your choice of market in the Choose Market field.
Enter the known part of the security name in the Lookup field.

Click Submit. All possible values of the company name and ticker symbol
corresponding to the security name you specified display in the Security and
Symbol list.

Select one or more securities from the list, and then click Select.

The selected securities are added to the Selected Securities list on the Data tab.

The following figure summarizes these steps.

4-7

4 Datafeed Toolbox Graphical User Interface

4-8

2. Enter lookup search string. list.

) Datafeed Securities Lookup

4. Search results returned from data server.
This field displays all possible

values of company name and ticker
symbol. Select desired securities from

=10]x|

Choose

Market:

|Equ‘rty

Loc;kup: Security ¢ Symbol

FORD FORD MOTOR CO (FORDA NA :]
FORD MOTOR CO {FU N
FORD MOTOR CO (14112 SW

[e.g. Intl, Ford, ATET,]| |1 2o o woToR co

FOID MOTOR CO

FORD MOTOR CO
FORD MOTOR CO

TATDT WATAT S0 T

{F US
(FDMTF US
(FG IX
(FZ IX

PR Pt T £ 2

)
)
)
(F 8w)
)
)
)

Select

]

Clg

1. Indicate choice of market.

3. Click to send
request to data
server.

5. Enter selected
securities on Data
tab.

Functions — Alphabetical List

5 Functions — Alphabetical List
P

5-2

dftool

Datafeed dialog box

Syntax

dftool

Description

The Datafeed dialog box establishes the connection with the data server and manages
data retrieval. Use this dialog box to connect to and retrieve data from Yahoo!.

To display this dialog box, enter the dftool command in the MATLAB Command
Window.

The Datafeed dialog box has two tabs:

+ The Connection tab establishes communication with a data server. For details, see
“Connecting to Data Servers” on page 4-4.

* The Data tab specifies the data request. For details, see “Retrieving Data” on page
4-5.

Examples

dftool

dftool

B Datafeed

Connection Data

Data Source:

Yahoo

Port Number:

Using default port

IP Address:

Using default IP Address

Current Connections:

7
- | [Disconnect]

Connection History:

17:41:48 - Connect to Yahoo. -
conn = yahoo(http://downlead. finance.yahoo.com’

Status: 4 | [1[} | »
Connected: Yahoo
Close

More About

. “Retrieving Data Using the Datafeed Dialog Box”

5-3

5 Functions — Alphabetical List
P

5-4

blp

Bloomberg communications server connection V3

¢ = blp(portnumber,ip,timeout)

Description

c = blp connects to the local Bloomberg V3 communications server. You need a
Bloomberg Desktop software license for the host on which the Datafeed Toolbox and
MATLAB software are running.

Caution: Use the connection object created by calling the blp function to refer to a
Bloomberg connection in other functions. Otherwise, using blp as an argument opens
multiple Bloomberg connections causing unexpected behavior and exhausting memory
resources.

¢ = blp(portnumber,ip,timeout) connects to the local Bloomberg communications
server using the IP address of the local machine where Bloomberg is running and a
timeout value.

Examples

Connect to a Bloomberg Communications Server

Establish a connection € to a Bloomberg communications server.
c = blp
CcC =

blp with properties:
session: [1x1 com.bloomberglp.blpapi.Session]

blp

ipaddress: "localhost”
port: 8194
timeout: O

blp creates a Bloomberg connection object ¢ and returns its properties.

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Connect to a Bloomberg Communications Server with a Timeout

Establish a connection using the default port and "localhost” as the IP address, with a
timeout value of 10,000 milliseconds.

¢ = blp([l.[1,10000)

C p—
blp with properties:
session: [1x1 com.bloomberglp.blpapi.Session]
ipaddress: "localhost”
port: 8194
timeout: 10000

blp creates a Bloomberg connection object ¢ and returns its properties.

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

. “Connect to Bloomberg”

Input Arguments

portnumber — Port number
[1 (default) | scalar

Port number, specified as a scalar to identify the port number of the local machine where
Bloomberg is running.

Data Types: double

ip — IP address
[1 (default) | string

5-5

5 Functions — Alphabetical List
P

IP address, specified as a string to identify the local machine where Bloomberg is
running.

Data Types: char

timeout — Timeout value
scalar

Timeout value, specified as a scalar to denote the time in milliseconds the local machine
attempts to connect before timing out if the connection cannot be established.

Data Types: double

Output Arguments

¢ — Bloomberg V3 connection
connection object

Bloomberg V3 connection, returned as a connection object. The properties of this object
are as follows.

Property Description

session Bloomberg V3 API COM object

ipaddress IP address of the local machine

port Port number of the local machine

timeout Number in milliseconds specifying how
long MATLAB attempts to connect to a
Bloomberg V3 communications server
before timing out

More About
Tips

With the Bloomberg V3 release, there is a Java® archive file from Bloomberg that you
need to install for blp and other Bloomberg commands to work correctly.

5-6

blp

If you already have blpapi3.jar downloaded from Bloomberg, you can find it in your
Bloomberg folders at - .\bIp\api\APIv3\JavaAPI\lib\blpapi3.jaror . .\blp
\api\APIv3\JavaAPI\v3.x\lib\blpapi3.jar. If you have blpapi3. jar, go to step
3.

If blpapi3.jar is not downloaded from Bloomberg, then download it as follows:

1 In your Bloomberg terminal, type WAP1 {GO} to open the API Developer’s Help Site
screen.

2 Click API Download Center, then click Desktop API.

3 Once you have blpapi3. jar on your system, add it to the MATLAB Java class path
using javaaddpath.

You need to do this for every session of MATLAB. To avoid repeating this

at every session, add javaaddpath to your startup.m file or add the full

path for blpapi3. jar to your javaclasspath.txt file. For details about
Javaclasspath.txt, see “The Java Class Path”. For details about editing your
startup.m file, see “Specifying Startup Options in MATLAB Startup File”.

“Comparing Bloomberg Connections”
“Workflow for Bloomberg”

See Also

blpsrv | bpipe | category | close | fieldinfo | fieldsearch | getdata |
history | realtime | timeseries

5-7

5 Functions — Alphabetical List
P

5-8

blpsrv

Bloomberg Server connection V3

Syntax

(¢}
|

= blpsrv(uuid,serverip)
¢ = blpsrv(uuid,serverip,portnumber)
blpsrv(uuid,serverip,portnumber,timeout)

o
1

Description

c = blpsrv(uuid,serverip) creates a Bloomberg Server connection c to the
Bloomberg Server running on another machine, which is identified by IP address
serverip using your Bloomberg UUID. You need a Bloomberg Server license for the
machine running the Bloomberg Server.

Cavution: Use the connection object created by calling the blpsrv function to refer to a
Bloomberg connection in other functions. Otherwise, using blpsrv as an argument opens
multiple Bloomberg connections causing unexpected behavior and exhausting memory
resources.

c = blpsrv(uuid,serverip,portnumber) connects to the Bloomberg Server using a
specific port number.

¢ = blpsrv(uuid,serverip,portnumber,timeout) connects to the Bloomberg
Server using a timeout value.

Examples

Connect to the Bloomberg Server

Connect to the Bloomberg Server using the IP address of the machine running the
Bloomberg Server. This code assumes the following:

blpsrv

The Bloomberg UUID is 12345678.

The IP address serverip for the machine running the Bloomberg Server is
"111.11.211.121".

uuid = 12345678;
serverip = "111.11.11.111";

C

C

= blpsrv(uuid,serverip)

blpsrv with properties:

uuid: 12345678
user: [1x1 com.bloomberglp.blpapi.impl.aT]
userip: "111.11.11.112"
session: [1x1 com.bloomberglp.blpapi.Session]
ipaddress: "111.11.11.111°
port: 8194
timeout: O

blpsrv connects to the machine running the Bloomberg Server using the default port
number 8194. blpsrv creates the Bloomberg Server connection object ¢ with these
properties:

Bloomberg user identity UUID

Bloomberg user identity object

IP address of the machine running MATLAB

Bloomberg API object

IP address of the machine running the Bloomberg Server
Port number of the machine running the Bloomberg Server

Number in milliseconds specifying how long MATLAB attempts to connect to the
machine running the Bloomberg Server before timing out

Close the Bloomberg Server connection.

close(c)

Connect to the Bloomberg Server with a Port Number

Connect to the Bloomberg Server using the IP address of the machine running the
Bloomberg Server. This code assumes the following:

5-9

5 Functions — Alphabetical List
P

* The Bloomberg UUID is 12345678.

* The IP address serverip for the machine running the Bloomberg Server is
"111.11.12.111°".

* The default port number is 8194.
uuid = 12345678;

serverip = "111.11.11.111";
portnumber = 8194;

c blpsrv(uuid,serverip,portnumber)

CcC =
blpsrv with properties:

uuid: 12345678
user: [1x1 com.bloomberglp.blpapi.impl.aT]
userip: "111.11.11.112"
session: [1x1 com.bloomberglp.blpapi.Session]
ipaddress: "111.11.11.111°
port: 8194
timeout: O

bIpsrv connects to the machine running the Bloomberg Server using the default port
number 8194. blpsrv creates the Bloomberg Server connection object ¢ with these
properties:

* Bloomberg user identity UUID

+ Bloomberg user identity object

+ IP address of the machine running MATLAB

* Bloomberg API object

* IP address of the machine running the Bloomberg Server

* Port number of the machine running the Bloomberg Server

* Number in milliseconds specifying how long MATLAB attempts to connect to the
machine running the Bloomberg Server before timing out

Close the Bloomberg Server connection.

5-10

blpsrv

close(c)
Connect to the Bloomberg Server with a Timeout

Connect to the Bloomberg Server using the IP address of the machine running the
Bloomberg Server. This code assumes the following:
* The Bloomberg UUID is 12345678.

* The IP address serverip for the machine running the Bloomberg Server is
"111.11.11.111°".

* The port number is your default port number.

* The timeout value 1s 10 milliseconds.

uuid = 12345678;

serverip = "111.11.11.111";
portnumber = [];

timeout = 10;

C blpsrv(uuid,serverip,portnumber,timeout)

CcC =
blpsrv with properties:

uuid: 12345678
user: [1x1 com.bloomberglp.blpapi.impl.aT]
userip: "111.11.11.112*
session: [1x1 com.bloomberglp.blpapi.Session]
ipaddress: "111.11.11.111°
port: 8194
timeout: 10

bIpsrv connects to the machine running the Bloomberg Server using the default port
number 8194 and a timeout value of 10 milliseconds. blpsrv creates the Bloomberg
Server connection object ¢ with these properties:

* Bloomberg user identity UUID

* Bloomberg user identity object

+ IP address of the machine running MATLAB

* Bloomberg API object

+ IP address of the machine running the Bloomberg Server

5-11

5 Functions — Alphabetical List

5-12

* Port number of the machine running the Bloomberg Server

* Number in milliseconds specifying how long MATLAB attempts to connect to the
machine running the Bloomberg Server before timing out

Close the Bloomberg Server connection.
close(c)

. “Connect to Bloomberg”

Input Arguments

uuid — Bloomberg user identity UUID

scalar

Bloomberg user identity UUID, specified as a scalar. To find your UUID, enter 1AM in the
Bloomberg terminal and press GO.

Example: 12345678
Data Types: double

serverip — Bloomberg Server IP address

string

Bloomberg Server IP address, specified as a string to identify the machine where the
Bloomberg Server is running.

Data Types: char

portnumber — Port number
[1 (default) | scalar

Port number, specified as a scalar to identify the port number of the machine where the
Bloomberg Server is running.
Data Types: double

timeout — Timeout value
scalar

Timeout value, specified as a scalar to denote the time in milliseconds the local machine
attempts to connect before timing out if the connection cannot be established.

blpsrv

Data Types: double

Output Arguments

¢ — Bloomberg Server connection V3
connection object

Bloomberg Server connection V3, returned as a Bloomberg Server connection object with
these properties.

Property Description

uuid Bloomberg user identity UUID

user Bloomberg user identity object

userip IP address of the machine running
MATLAB

session Bloomberg API object

ipaddress IP address of the machine running the

Bloomberg Server

port Port number of the machine running the
Bloomberg Server

timeout Number in milliseconds specifying how
long MATLAB attempts to connect to the
machine running the Bloomberg Server
before timing out

More About

. “Comparing Bloomberg Connections”
. “Workflow for Bloomberg”

See Also

blp | bpipe | category | close | fieldinfo | fieldsearch | getdata | history
| realtime | timeseries

5-13

5 Functions — Alphabetical List
P

5-14

bpipe

Bloomberg B-PIPE connection V3

Syntax

C
C

bpipe(authtype,appname,serverip,portnumber)
bpipe(authtype,appname,serverip,portnumber,timeout)

Description

c = bpipe(authtype,appname,serverip,portnumber) creates a Bloomberg B-
PIPE connection c using the following:

+ Authorization type authtype

Application name appname
IP address serverip of the machine where the Bloomberg B-PIPE process is running
Port number

c = bpipe(authtype,appname,serverip,portnumber,timeout) creates a
Bloomberg B-PIPE connection € using a timeout value.

Examples

Create a Bloomberg B-PIPE Connection

Create a Bloomberg B-PIPE connection using the IP address of the machine where the
Bloomberg B-PIPE process is running. This code assumes the following:

* The authentication is Windows Authentication when setting authtype to
"0OS_LOGON*™.

+ The application name is blank because you are not connecting to Bloomberg B-PIPE
using an application.

* The IP address serverip for the machine, which is running the Bloomberg B-PIPE
process, 1s "111.11.11.112°".

* The port number is 8194.

bpipe

authtype = "0S_LOGON";
appname = "°;
serverip = {"111.11.11.112"%};

portnumber = 8194;

bpipe(authtype,appname,serverip,portnumber)

C
CcC =

bpipe with properties:

appauthtype: **
authtype: "0S_LOGON*"
appname: []

user: [1x1 com.bloomberglp.blpapi.impl.aT]
session: [1x1 com.bloomberglp.blpapi.Session]
ipaddress: {"111.11.11.112"}
port: 8194.00
timeout: O

bpipe connects to Bloomberg B-PIPE at port number 8194. bpipe creates the
Bloomberg B-PIPE connection object ¢ with these properties:

+ Application authentication type

* Bloomberg user authentication type

* Application name

* Bloomberg user identity object

* Bloomberg V3 API object

+ IP address of the machine where the Bloomberg B-PIPE process is running

* Port number of the machine where the Bloomberg B-PIPE process is running

* Number in milliseconds specifying how long MATLAB attempts to connect to the
machine running the Bloomberg V3 B-PIPE API before timing out

Close the Bloomberg B-PIPE connection.

close(c)
Create a Bloomberg B-PIPE Connection with a Timeout

Create a Bloomberg B-PIPE connection using the IP address of the machine where the
Bloomberg B-PIPE process is running. This code assumes the following:

5-15

5 Functions — Alphabetical List
P

* The authentication is Windows Authentication when setting authtype to
"0OS_LOGON".

* The application name is blank because you are not connecting to Bloomberg B-PIPE
using an application.

* The IP address serverip for the machine, which is running the Bloomberg B-PIPE
process, is "111.11.11.112".

* The port number is 8194,

* The timeout value 1s 1000 milliseconds.

authtype = “0S_LOGON";
appname = "°;

serverip = {"111.11.11.112"};
portnumber = 8194;

timeout = 1000;

c bpipe(authtype,appname,serverip,portnumber,timeout)
Cc =

bpipe with properties:

appauthtype: **
authtype: "0S_LOGON*"
appname: []

user: [1x1 com.bloomberglp.blpapi.impl.aT]
session: [1x1 com.bloomberglp.blpapi.Session]
ipaddress: {"172.28.17.118"}
port: 8194.00
timeout: 1000.00

bpipe connects to Bloomberg B-PIPE at port number 8194. bpipe creates the
Bloomberg B-PIPE connection object ¢ with these properties:

* Application authentication type

* Bloomberg user authentication type

+ Application name

* Bloomberg user identity object

* Bloomberg V3 API object

+ IP address of the machine where the Bloomberg B-PIPE process is running

* Port number of the machine where the Bloomberg B-PIPE process is running

5-16

bpipe

* Number in milliseconds specifying how long MATLAB attempts to connect to the
machine running the Bloomberg V3 B-PIPE API before timing out

Close the Bloomberg B-PIPE connection.
close(c)

. “Connect to Bloomberg”

Input Arguments

authtype — Authorization type
string

Authorization type, specified as one of these enumerated Bloomberg strings.

Bloomberg String Description

"0OS_LOGON* Create Bloomberg B-PIPE connection with
Windows Authentication.

"APPLICATION_ONLY"* Create Bloomberg B-PIPE connection with
application authentication.

For details, see the Bloomberg B-PIPE API Developer’s Guide using the WAPI <GO>
option from the Bloomberg terminal.

Data Types: char

appname — Application name
string

Application name, specified as a string to identify the application you are using that
connects to Bloomberg B-PIPE.

Data Types: char

serverip — IP address for the machine
string

IP address for the machine, specified as a string to identify the machine where the
Bloomberg B-PIPE process is running.

Data Types: char

5-17

5 Functions — Alphabetical List
P

5-18

portnumber — Port number
[1 (default) | scalar

Port number, specified as a scalar to identify the port number of the machine where the
Bloomberg B-PIPE process is running.

Data Types: double

timeout — Timeout value
scalar

Timeout value, specified as a scalar to denote the time in milliseconds the local machine
attempts to connect before timing out if the connection cannot be established.

Data Types: double

Output Arguments

¢ — Bloomberg B-PIPE connection
connection object

Bloomberg B-PIPE connection, returned as a connection object with these properties.

Property Description

appauthtype Application authentication type

authtype Bloomberg user authentication type

appname Application name

user Bloomberg user identity object

session Bloomberg V3 API object

ipaddress IP address of the machine where the
Bloomberg B-PIPE process is running

port Port number of the machine where the
Bloomberg B-PIPE process is running

timeout Number in milliseconds specifying how
long MATLAB attempts to connect to the
machine running the Bloomberg V3 B-
PIPE API before timing out

bpipe

More About

“Comparing Bloomberg Connections”
“Workflow for Bloomberg”

See Also

blp | blpsrv | category | close | fieldinfo | Fieldsearch | getdata |
history | realtime | timeseries

5-19

5 Functions — Alphabetical List
P

category

Field category search for Bloomberg connection V3

Syntax

d = category(c,f)

Description

d = category(c,f) returns category information given a search term .

Examples

Search for the Bloomberg Last Price Field
Create the Bloomberg connection.
c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Request the Bloomberg category description of the last price field.
d = category(c, "LAST_PRICE");

Display the first three rows of Bloomberg category description data in d.

d(1:3,:)

ans =
"Analysis”® "0P054* "DELTA_LAST* "Delta Last Trade..." "Double*
"Analysis” "OPO51* "1VOL_LAST* "Implied Volatili...~ “Double*
"Analysis”® "0P006* "DELTA* "Delta Best Price” "Double*

The columns in d contain the following:

+ Category

5-20

category

* Field identifier
* Field mnemonic
* Field name

* Field data type

Close the Bloomberg connection.

close(c)

Input Arguments

¢ — Bloomberg connection
connection object

Bloomberg connection, specified as a connection object created using blp.

f — Search term
string

Search term, specified as a string to denote Bloomberg fields.

Data Types: char

Output Arguments

d — Return data
cell array

Return data, returned as an N-by-5 cell array containing categories, field identifiers, field
mnemonics, field names, and field data types for each N row in the data set.

More About

. “Workflow for Bloomberg”

See Also
blp | close | fieldinfo | fieldsearch | getdata | history | realtime |
timeseries

5-21

5 Functions — Alphabetical List
P

close

Close Bloomberg connection V3

Syntax

close(c)

Description

close(c) closes the Bloomberg V3 connection C.

Examples

Close the Bloomberg Connection
Create the Bloomberg connection object ¢ using blp.
c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Close the Bloomberg connection using the Bloomberg connection object c.

close(c)

. “Connect to Bloomberg”

. “Retrieve Bloomberg Current Data”

. “Retrieve Bloomberg Historical Data”

. “Retrieve Bloomberg Intraday Tick Data”
. “Retrieve Bloomberg Real-Time Data”
Input Arguments

¢ — Bloomberg connection
connection object

5-22

close

Bloomberg connection, specified as a connection object created using blp.

More About

“Workflow for Bloomberg”

See Also
blp | blpsrv | bpipe

5-23

5 Functions — Alphabetical List
P

5-24

eqgs

Return equity screening data from Bloomberg connection V3

Syntax

d = eqs(c,sname)

d = eqs(c,sname,stype)

d = eqs(c,sname,stype, languageid)

d = eqs(c,sname,stype, languageid,group)

Description

d = eqs(c,sname) returns equity screening data given the Bloomberg V3 session
screen name sname.

d = eqgs(c,sname,stype) returns equity screening data using the screen type stype.
stype can be set to "GLOBAL" for Bloomberg screen names or "PRIVATE" for customized
screen names.

d = eqs(c,shame,stype, languageid) returns equity screening data using the
language identifier languageid.

d = eqs(c,sname,stype, languageid,group) returns equity screening data using
the optional group identifier group.

Examples

Retrieve Equity Screening Data for a Screen
Create the Bloomberg connection.
c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

eqs

Retrieve equity screening data for the screen called Frontier Market Stocks with

1 billion USD Market Caps.

d = egs(c, "Frontier Market Stocks with 1 billion USD Market Caps®);

Display the first three rows in the returned data d.
d(1:3,:)
ans =

Columns 1 through 4

“Cntry* “Name* “Ind Group* “"Market Cap*
"Bahrain® "ARAB BANKING COR...* "Banks* [1166249984 .00]
"South Africa* "HARMONY GOLD MIN...* “Mining* [1239142656.00]

Columns 5 through 8

*Price:D-1" *p/B" "P/E" "EPS - 1 Yr Gr LF"
[0.38] [0.30] [5.18] [24.53]
[2.89] [0.40] [NaN] [-96.84]

d contains Bloomberg equity screening data for the Frontier Market Stocks with
1 billion USD Market Caps screen. The first row contains column headers and the

subsequent rows contain the returned data. The columns in d contain the following:

+ Country name

* Company name

* Industry name

* Market capitalization
* Price

* Price-to-book ratio

* Price-earnings ratio

+ Earnings per share

Close the connection.

close(c)
Retrieve Equity Screening Data for a Screen Type

Create the Bloomberg connection.

c = blp;

5-25

5 Functions — Alphabetical List
P

5-26

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Retrieve equity screening data for the screen called Vehicle-Engine-Parts and the
screen type equal to "GLOBAL".

d = egs(c, "Vehicle-Engine-Parts®, "GLOBAL");

Display the first three rows in the returned data d.

d(1:3,:)

ans =

Columns 1 through 5

"Ticker” "Short Name* "Market Cap* "Price:D-1" "P/E"
“HON us- "HONEYWELL INTL™ [69451382784.00] [88.51] [16.81]
“CM1 us- “CUMMINS INC* [24799526912.00] [132.36] [17.28]

Columns 6 through 8

"Total Return YTD" "Revenue T12M* "EPS T12M*"
[42.43] [38248998912.00] [4.11]
[24 .43] [17004999936.00] [7.57]

d contains Bloomberg equity screening data for the Vehicle-Engine-Parts screen.
The first row contains column headers and the subsequent rows contain the returned
data. The columns in d contain the following:

* Ticker symbol

+ Company name

* Market capitalization

* Price

* Price-earnings ratio

+ Total return year-to-date

* Revenue

* Earnings per share

Close the connection.

close(c)
Retrieve Equity Screening Data for a Screen in German

Create the Bloomberg connection.

eqs

c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Retrieve equity screening data for the screen called Vehicle-Engine-Parts, the screen
type equal to "GLOBAL ", and return data in German.

d = egs(c, "Vehicle-Engine-Parts®, "GLOBAL", "GERMAN™) ;

Display the first three rows in the returned data d.

d(1:3,:)
Columns 1 through 5
"Ticker* “Kurzname*® “Marktkapitalisie..." “Preis:D-1" “KGV*®
"HON us- "HONEYWELL INTL* [69451382784.00] L 88.51] [16.81]
el | us- “CUMMINS INC* [24799526912.00] L 132.36] [17.28]

Columns 6 through 8

"Gesamtertrag YTD" "Erlés Ti12m*® "EPS T12M*®
L 42.43] [38248998912.00] [4.11]
L 24.43] [17004999936.00] [7.57]

d contains Bloomberg equity screening data for the Vehicle-Engine-Parts screen.
The first row contains column headers in German and the subsequent rows contain the
returned data. The columns in d contain the following:

* Ticker symbol

+ Company name

* Market capitalization

* Price

* Price-earnings ratio

+ Total return year-to-date

* Revenue

* Earnings per share

Close the connection.

close(c)
Retrieve Equity Screening Data for a Screen with a Specified Screen Folder Name

Create the Bloomberg connection.

5-27

5 Functions — Alphabetical List
P

5-28

c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Retrieve equity screening data for the Bloomberg screen called Vehicle-Engine-
Parts, using the Bloomberg screen type "GLOBAL" and the language "ENGLISH", and
the Bloomberg screen folder name *GENERAL".

d = egs(c, “"Vehicle-Engine-Parts®, "GLOBAL", "ENGLISH" , *GENERAL") ;
Display the first three rows in the returned data d.

d(1:3,:)
ans =

Columns 1 through 5

"Ticker* “Short Name* "Market Cap* "Price:D-1" "P/E"
“HON us* "HONEYWELL INTL™ [69451382784.00] [88.51] [16.81]
“CMI1 us* “CUMMINS INC* [24799526912.00] [132.36] [17.28]

Columns 6 through 8

"Total Return YTD* "Revenue T12M* "EPS T12M*"
[42.43] [38248998912.00] [4.11]
[24 .43] [17004999936.00] [7.57]

d contains Bloomberg equity screening data for the Vehicle-Engine-Parts screen.
The first row contains column headers and the subsequent rows contain the returned
data. The columns in d contain the following:

* Ticker symbol

* Company name

* Market capitalization

* Price

* Price-earnings ratio

+ Total return year-to-date

* Revenue

+ Earnings per share

Close the connection.

eqs

close(c)

Input Arguments

¢ — Bloomberg connection
connection object

Bloomberg connection, specified as a connection object created using blp.

shame — Screen name
string

Screen name, specified as a string to denote the Bloomberg V3 session screen name to
execute. The screen can be a customized equity screen or one of the Bloomberg example
screens accessed by using the EQS <GO> option from the Bloomberg terminal.

Data Types: char

stype — Screen type
"GLOBAL*® | "PRIVATE"

Screen type, specified as one of the two enumerated strings above to denote the
Bloomberg screen type. "GLOBAL" denotes a Bloomberg screen name and "PRIVATE"
denotes a customized screen name. When using the optional group input argument,
stype cannot be set to "PRIVATE" for customized screen names.

Data Types: char

languageid — Language identifier
string

Language identifier, specified as a string to denote the language for the returned data.
This argument is optional.

Data Types: char

group — Group identifier
string

Group identifier, specified as a string to denote the Bloomberg screen folder name
accessed by using the EQS <GO> option from the Bloomberg terminal. This argument is

5-29

5 Functions — Alphabetical List

optional. When using this argument, stype cannot be set to "PRIVATE" for customized
screen names.

Data Types: char

Output Arguments

d — Return data
cell array

Return data, returned as a cell array containing Bloomberg equity screening data.

More About

. “Workflow for Bloomberg”

See Also
blp | close | getdata | tahistory

5-30

fieldinfo

fieldinfo

Field information for Bloomberg connection V3

Syntax

d = fieldinfo(c,f)

Description

d = Ffieldinfo(c, f) returns field information on Bloomberg V3 connection object ¢
given a field mnemonic f.

Examples

Retrieve Information for the Bloomberg Last Price Field

Create a Bloomberg connection.
c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Retrieve the Bloomberg field information for the "LAST_PRICE" field.
d = fieldinfo(c, "LAST_PRICE");
Display the returned Bloomberg information.

celldisp(d)
d{1} =
Last price for the security. Field updates in realtime.

Equities:
Returns the last price provided by the exchange. For securities that trade Monday through Friday, this field will be poy

5-31

5 Functions — Alphabetical List
P

5-32

d{2} =

RQO0S5

d{3} =

LAST_PRICE

d{4} =

Last Trade/Last Price

d{5} =
Double

The columns in d contain the following:

* Field help with the Bloomberg descriptive information
+ Field identifier

+ Field mnemonic

* Field name

* Field data type

Close the Bloomberg connection.

close(c)

Input Arguments

¢ — Bloomberg connection
connection object

Bloomberg connection, specified as a connection object created using blp.

¥ — Field mnemonic
string

Field mnemonic, specified as a string that is used to retrieve Bloomberg field
information.

Data Types: char

fieldinfo

Output Arguments

d — Return data
cell array

Return data, returned as an N-by-5 cell array containing the field help, field identifier,
field mnemonic, field name, and field data type.

More About

“Workflow for Bloomberg”

See Also

blp | category | close | fieldsearch | getdata | history | realtime |
timeseries

5-33

5 Functions — Alphabetical List
P

fieldsearch

Field search for Bloomberg connection V3

Syntax

d = fieldsearch(c,f)

Description

d = Fieldsearch(c, f) returns field information on Bloomberg V3 connection object C
given a search string .

Examples

Search for the Bloomberg Last Price Field
Create a Bloomberg connection.
c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Return data for the search string "LAST_PRICE".
d = fieldsearch(c, "LAST_PRICE");

Display the first three rows of the returned data d.

d(1:3,:)

ans =
"Market Activity/..." "PROO5" "PX_LAST" "Last Price” "Double*
"Market Activity/..." "RQO05" "LAST_PRICE" "Last Trade/Last ..." "Double*
"Market Activity/..." "RQ134" "LAST_ALL_SESSIONS™ "Last Price AlIl S..." "Double*

The columns in d contain the following:

5-34

fieldsearch

+ Category

+ Field identifier
* Field mnemonic
* Field name

* Field data type

Close the Bloomberg connection.

close(c)

Input Arguments

¢ — Bloomberg connection
connection object

Bloomberg connection, specified as a connection object created using blp.

f — Search term

string

Search term, specified as a string that is used to retrieve Bloomberg field descriptive
data.

Data Types: char

Output Arguments

d — Return data
cell array

Return data, returned as an N-by-5 cell array containing categories, field identifiers, field
mnemonics, field names, and field data types for each N row in the data set.

More About

. “Workflow for Bloomberg”

5-35

5 Functions — Alphabetical List

See Also

blp | category | close | fieldinfo | getdata | history | realtime |
timeseries

5-36

get

get

Properties of Bloomberg connection V3

Syntax

v = get(c)
v = get(c,properties)
Description

v = get(c) returns a structure where each field name is the name of a property of c
and each field contains the value of that property.

v = get(c,properties) returns the value of the specified properties properties for
the Bloomberg V3 connection object.

Examples

Retrieve Bloomberg Connection Properties
Create the Bloomberg connection.
c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Retrieve the Bloomberg connection properties.

v = get(c)

VvV =

session: [1x1 com.bloomberglp.blpapi.Session]
ipaddress: "localhost”
port: 8194
timeout: O

5-37

5 Functions — Alphabetical List
P

5-38

V is a structure containing the Bloomberg session object, IP address, port number, and
timeout value.

Close the Bloomberg connection.

close(c)

Retrieve One Bloomberg Connection Property
Create the Bloomberg connection.

c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Retrieve the port number from the Bloomberg connection object by specifying "port” as
a string.

property = "port-;
v = get(c,property)

v =
8194

Vv is a double that contains the port number of the Bloomberg connection object.

Close the Bloomberg connection.

close(c)

Retrieve Two Bloomberg Connection Properties

Create the Bloomberg connection.

c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Create a cell array properties with strings "session” and "port”. Retrieve the
Bloomberg session object and port number from the Bloomberg connection object.

properties = {"session”,"port"};
v = get(c,properties)

get

session: [1x1 com.bloomberglp.blpapi.Session]
port: 8194

V is a structure containing the Bloomberg session object and port number.

Close the Bloomberg connection.

close(c)

Input Arguments

¢ — Bloomberg connection
connection object

Bloomberg connection, specified as a connection object created using blp.

properties — Property names
string | cell array

Property names, specified as a string or cell array of strings containing Bloomberg
connection property names. The property names are session, ipaddress, port, and
timeout.

Data Types: char | cell

Output Arguments

v — Bloomberg connection properties
scalar | string | object | structure

Bloomberg connection properties, returned as a scalar if the port number or timeout is
requested, a string if the IP address is requested, an object if the Bloomberg session is
requested, or a structure if all properties are requested.

More About

. “Workflow for Bloomberg”

5-39

5 Functions — Alphabetical List

See Also

blp | close | getdata | history | realtime | timeseries

5-40

getbulkdata

getbulkdata

Bulk data with header information for Bloomberg connection V3

Syntax

[d,sec] = getbulkdata(c,s,¥f)

[d,sec] = getbulkdata(c,s,f,o0,0v)

[d,sec] = getbulkdata(c,s,f,o0,0ov,Name,Value)
Description

[d,sec] = getbulkdata(c,s,¥) returns the bulk data for the fields F for the security
list s.

[d,sec] = getbulkdata(c,s,f,0,0V) returns the bulk data using the override
fields o with corresponding override values ov.

[d,sec] = getbulkdata(c,s,f,o0,ov,Name,Value) returns the bulk data with
additional options specified by one or more Name,Value pair arguments for additional
Bloomberg request settings.

Examples

Return a Specific Field for a Given Security
Create the Bloomberg connection.
c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Return the dividend history for IBM.

security = “IBM US Equity”;
field = "DVD_HIST”; % Dividend history field

5-41

5 Functions — Alphabetical List

5-42

[d,sec] = getbulkdata(c,security,field)
d =

DVD_HIST: {{149x7 cell}}
sec =

"IBM US Equity"

d is a structure with one field that contains a cell array with the returned bulk data. sec
contains the IBM security name.

Display the dividend history with the associated header information by accessing the
structure field DVD_HIST. This field is a cell array that contains one cell array. The
nested cell array contains the dividend history data. Access the contents of the nested cell
using cell array indexing.

d.DVD_HIST{1}
ans =

Columns 1 through 6

“Declared Date* "Ex-Date” "Record Date* "Payable Date* "Dividend Amount® "Dividend Frequency”
[735536] [735544] [735546] [735578] [0.95] "Quarter”
[735445] [735453] [735455] [735487] [0.95] "Quarter”
[735354] [735362] [735364] [735395] [0.95] "Quarter”
Column 7

“Dividend Type*
"Regular Cash*
"Regular Cash*
"Regular Cash*

The first row of the dividend history data is the header information that describes the
contents of each column.

Close the connection.
close(c)
Return a Specific Field Using Override Values

Create the Bloomberg connection.

c = blp;

getbulkdata

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Return the dividend history for IBM with dividend dates from January 1, 2004 through
January 1, 2005.

security = "IBM US Equity”;
field = "DVD HIST"; % Dividend history field
override = {"DVD_START_DT","DVD_END_DT"}; % Dividend start and

% End dates
overridevalues = {"20040101","20050101"};

[d,sec] = getbulkdata(c,security,field,override,overridevalues)
d =

DVD_HIST: {{5x7 cell}}
sec =

"IBM US Equity*

d is a structure with one field that contains a cell array with the returned bulk data. sec
contains the IBM security name.

Display the dividend history with the associated header information by accessing the
structure field DVD_HIST. This field is a cell array that contains one cell array. The
nested cell array contains the dividend history data. Access the contents of the nested cell
using cell array indexing.

d.DVD_HIST{1}

ans =

Columns 1 through 6

“Declared Date* "Ex-Date* "Record Date* "Payable Date* “Dividend Amount® "Dividend Frequency®
[732246] [732259] [732261] [732291] [0.18] "Quarter*
[732155] [732165] [732169] [732200] L 0.18] "Quarter*
[732064] [732073] [732077] [732108] [0.18] "Quarter*
[731973] [731983] [731987] [732016] L 0.16] "Quarter*
Collumn 7

“Dividend Type*
“Regular Cash*
"Regular Cash*
"Regular Cash*
"Regular Cash*®

5-43

5 Functions — Alphabetical List
P

5-44

The first row of the dividend history data is the header information that describes the
contents of each column.

Close the connection.

close(c)
Return a Specific Field Using Name-Value Pair Arguments

Create the Bloomberg connection.
c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Return the closing price and dividend history for IBM with dividend dates from January
1, 2004 through January 1, 2005. Specify the data return format as a string by setting
the name-value pair argument "returnFormattedvValue® to "true”.

security = "IBM US Equity”;
fields = {"LAST_PRICE","DVD_HIST"}; % Closing price and

% Dividend history fields
override = {"DVD_START_DT","DVD_END_DT"}; % Dividend start and

% End dates
overridevalues = {"20040101","20050101"%};

[d,sec] = getbulkdata(c,security,fields,override,overridevalues, ...
"returnFormattedvalue” , true)

d =

DVD_HIST: {{5x7 cell}}
LAST PRICE: {"188.74"}

sec =
"IBM US Equity"

d is a structure with two fields. The first field DVD_HIST contains a cell array with the
dividend historical data as a cell array. The second field LAST_PRICE contains a cell
array with the closing price as a string. sec contains the IBM security name.

Display the closing price.

getbulkdata

d.LAST_PRICE
ans =
"188.74"

Display the dividend history with the associated header information by accessing the
structure field DVD_HIST. This field is a cell array that contains one cell array. The
nested cell array contains the dividend history data. Access the contents of the nested cell
using cell array indexing.

d.DVD_HIST{1}

ans =

Columns 1 through 6

“Declared Date* "Ex-Date* "Record Date* "Payable Date* "Dividend Amount* *Dividend Frequency”
[732246] [732259] [732261] [732291] [0.18] "Quarter*
[732155] [732165] [732169] [732200] [0.18] "Quarter*
[732064] [732073] [732077] [732108] [0.18] "Quarter*
[731973] [731983] [731987] [732016] [0.16] "Quarter*

Column 7

“Dividend Type*®
“Regular Cash*
“Regular Cash*
“Regular Cash*
“Regular Cash*

The first row of the dividend history data is the header information that describes the
contents of each column.

Close the connection.

close(c)

Input Arguments

¢ — Bloomberg connection
connection object

Bloomberg connection, specified as a connection object created using blp.
s — Security list

string | cell array

5-45

5 Functions — Alphabetical List
P

5-46

Security list, specified as a string for one security or a cell array for multiple securities.
You can specify the security by name or by CUSIP, and with or without the pricing
source.

Data Types: char | cell
T — Bloomberg data fields
string | cell array

Bloomberg data fields, specified as a Bloomberg-specific string for one data field or a cell
array of Bloomberg-specific strings for multiple data fields. For details about the strings
you can specify, see the Bloomberg API Developer’s Guide using the WAPI <GO> option
from the Bloomberg terminal.

Example: {"LAST_PRICE" ; "OPEN"}

Data Types: char | cell

0 — Bloomberg override field
string | cell array

Bloomberg override field, specified as a Bloomberg-specific string for one data field or

a cell array of Bloomberg-specific strings for multiple data fields. For details about the
strings you can specify, see the Bloomberg API Developer’s Guide using the WAPI <GO>
option from the Bloomberg terminal.

Example: "END_DT*
Data Types: char | cell

ov — Bloomberg override field value
string | cell array

Bloomberg override field value, specified as a string for one Bloomberg override field or
a cell array of strings for multiple Bloomberg override fields. Use this field value to filter
the Bloomberg data result set.

Example: "20100101"
Data Types: char | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

getbulkdata

quotes (* 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example: *returnFormattedvalue”,true

"returnEids" — Entilement identifiers
true | false

Entitlement identifiers, specified as a Boolean where true adds a name and value for the
entitlement identifier (EID) date to the return data.
Data Types: logical

"returnFormattedvalue® — Return format
true | false

Return format, specified as a Boolean where true forces all data to be returned as a data
type string.
Data Types: logical

"useUTCTime" — Date time format
true | false

Date time format, specified as a Boolean where true returns date and time values as
Coordinated Universal Time (UTC) and false defaults to the Bloomberg TZDF <GO>
settings of the requestor.

Data Types: logical

"forcedDelay" — Latest reference data
true | false

Latest reference data, specified as a Boolean where true returns the latest data up to
the delay period specified by the exchange for the security.

Data Types: logical

Output Arguments

d — Bloomberg return data
structure

5-47

5 Functions — Alphabetical List
P

Bloomberg return data, returned as a structure with the Bloomberg data. For details
about the returned data, see the Bloomberg API Developer’s Guide using the WAPI
<GO> option from the Bloomberg terminal.

sec — Security list
cell array

Security list, returned as a cell array of strings for the corresponding securities in s. The
contents of sec are identical in value and order to s. You can return securities with any
of the following identifiers:

* buid

+ cats

+ cins

* common
* cusip

* isin

+ sedoll
+ sedol2
+ sicovam
* svm

+ ticker (default)
+ wpk

More About

. “Workflow for Bloomberg”

See Also

blp | close | getdata | history | realtime | timeseries

5-48

getdata

getdata

Current data for Bloomberg connection V3

Syntax

[d,sec] = getdata(c,s,T)

[d,sec] = getdata(c,s,f,o0,0v)

[d,sec] = getdata(c,s,f,o0,ov,Name,Value)
Description

[d,sec] = getdata(c,s,¥) returns the data for the fields ¥ for the security list s.

[d,sec] = getdata(c,s,f,0,0V) returns the data using the override fields o with
corresponding override values ov.

[d,sec] = getdata(c,s,f,o0,ov,Name,Value) returns the data using Name,Value
pair arguments for additional Bloomberg request settings.

Examples

Return the Last and Open Price of the Given Security

Create the Bloomberg connection.
c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Request last and open prices for Microsoft.
[d,sec] = getdata(c, "MSFT US Equity”,{"LAST_PRICE";"OPEN"})
d =

LAST_PRICE: 33.3401
OPEN: 33.6000

5-49

5 Functions — Alphabetical List
P

sec =
"MSFT US Equity”

getdata returns a structure d with the last and open prices. Also, getdata returns the
security in sec.

Close the connection.

close(c)

Return the Requested Fields Given Override Fields and Values
Create the Bloomberg connection.

c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Request data for Bloomberg fields "YLD_YTM_ASK®", "ASK", and "OAS_SPREAD ASK*"
when the Bloomberg field "OAS_VOL_ASK" is "14.000000".

[d,sec] = getdata(c, "030096AF8 Corp”-, ...
{"YLD_YTM_ASK™","ASK", "0AS_SPREAD_ASK","0AS VOL_ASK"}, ...
{"0AS_VOL_ASK"},{"14.000000"})

d =
YLD_YTM_ASK: 5.6763
ASK: 120.7500
OAS_SPREAD_ASK: 307.9824
OAS_VOL_ASK: 14
sec =

"030096AF8 Corp*
getdata returns a structure d with the resulting values for the requested fields.

Close the connection.

close(c)
Return a Request for a Security Using its CUSIP Number

Create the Bloomberg connection.

5-50

getdata

c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Request the last price for IBM with the CUSIP number.

d = getdata(c, "/cusip/459200101~, "LAST_PRICE™)

d =
LAST_PRICE: 182.5100

getdata returns a structure d with the last price.

Close the connection.

close(c)

Return the Last Price for the Security with a Pricing Source
Create the Bloomberg connection.

c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Specify IBM with the CUSIP number and the pricing source BGN after the @ symbol.

d = getdata(c, "/cusip/459200101@BGN", *LAST PRICE")

d =
LAST_PRICE: 186.81

getdata returns a structure d with the last price.

Close the connection.

close(c)
Return the Constituent Weights Using a Date Override

Create the Bloomberg connection.

c = blp;

5-51

5 Functions — Alphabetical List

5-52

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Return the constituent weights for the Dow Jones Index as of January 1, 2010 using a
date override with the required date format YYYYMMDD.

d = getdata(c,’DJX Index”,” INDX_MWEIGHT”,”END_DT”,”20100101”)

d =
INDX_MWEIGHT: {{30x2 cell}}

getdata returns a structure d with a cell array where the first column is the index and
the second column is the constituent weight.

Display the constituent weights for each index.

d. INDX_MWEIGHT{1,1}

ans =
"AA UN" [1.1683]
"AXP UN" [2.9366]
"BA UN" [3.9229]

"BAC UN" [1.0914]

Close the connection.
close(c)

. “Retrieve Bloomberg Current Data”

Input Arguments

¢ — Bloomberg connection
connection object

Bloomberg connection, specified as a connection object created using blp.

s — Security list
string | cell array

Security list, specified as a string for one security or a cell array for multiple securities.
You can specify the security by name or by CUSIP, and with or without the pricing
source.

getdata

Data Types: char | cell

T — Bloomberg data fields
string | cell array

Bloomberg data fields, specified as a Bloomberg-specific string for one data field or a cell
array of Bloomberg-specific strings for multiple data fields. For details about the strings
you can specify, see the Bloomberg API Developer’s Guide using the WAPI <GO> option
from the Bloomberg terminal.

Example: {"LAST_PRICE"; "OPEN"}
Data Types: char | cell

0 — Bloomberg override field
string | cell array

Bloomberg override field, specified as a Bloomberg-specific string for one data field or

a cell array of Bloomberg-specific strings for multiple data fields. For details about the
strings you can specify, see the Bloomberg API Developer’s Guide using the WAPI <GO>
option from the Bloomberg terminal.

Example: "END_DT"
Data Types: char | cell

ov — Bloomberg override field value
string | cell array

Bloomberg override field value, specified as a string for one Bloomberg override field or
a cell array of strings for multiple Bloomberg override fields. Use this field value to filter
the Bloomberg data result set.

Example: "20100101"

Data Types: char | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

quotes (" 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

5-53

5 Functions — Alphabetical List
P

Example: "returnEids"®, true

"returnEids" — Entitlement identifiers
true | false

Entitlement identifiers, specified as a Boolean where true adds a name and value for the
entitlement identifier (EID) date to the return data.

Data Types: logical

"returnFormattedvalue® — Return format
true | false

Return format, specified as a Boolean where true forces all data to be returned as a data
type string.

Data Types: logical

"useUTCTime" — Date time format
true | false

Date time format, specified as a Boolean where true returns date and time values as
Coordinated Universal Time (UTC) and false defaults to the Bloomberg TZDF <GO>
settings of the requestor.

Data Types: logical

"forcedDelay" — Latest reference data
true | false

Latest reference data, specified as a Boolean where true returns the latest data up to
the delay period specified by the exchange for the security.

Data Types: logical

Output Arguments

d — Bloomberg return data
structure

Bloomberg return data, returned as a structure with the Bloomberg data. For details
about the returned data, see the Bloomberg API Developer’s Guide using the WAPI
<GO> option from the Bloomberg terminal.

5-54

getdata

sec — Security list
cell array

Security list, returned as a cell array of strings for the corresponding securities in s. The
contents of sec are identical in value and order to S. You can return securities with any
of the following identifiers:

* buid

+ cats

+ cins

+ common
* cusip

+ 1isin

+ sedoll
+ sedol2
* sicovam
* svm

+ ticker (default)
+ wpk

More About
Tips

* Bloomberg V3 data supports additional name-value pair arguments. To access further
information on these additional name-value pairs, see the Bloomberg API Developer’s
Guide using the WAPI <GO> option from the Bloomberg terminal.

You can check data and field availability by using the Bloomberg Excel® Add-In.

. “Workflow for Bloomberg”

See Also

blp | close | history | realtime | timeseries

5-55

5 Functions — Alphabetical List
P

5-56

history

Historical data for Bloomberg connection V3

Syntax

[d,sec] = history(c,s,T,fromdate, todate)

[d,sec] = history(c,s,f,fromdate, todate,period)

[d,sec] = history(c,s,f,fromdate, todate,period,currency)

[d,sec] = history(c,s,T,fromdate,todate,period,currency,Name,Value)
Description

[d,sec] = history(c,s,f,fromdate,todate) returns the historical data for the
security list s and the connection object c for the fields F for the dates FromDate through
ToDate. Date strings can be input in any format recognized by MATLAB. sec is the
security list that maps the order of the return data. The return data, d and sec, are
sorted to match the input order of s.

[d,sec] = history(c,s,T,fromdate, todate,period) returns the historical
data for the fields ¥ and the dates fromdate through todate with a specific periodicity
period.

[d,sec] = history(c,s,T,fromdate,todate,period,currency) returns the
historical data for the security list s for the fields ¥ and the dates fromdate through
todate based on the given currency currency.

[d,sec] = history(c,s,T,fromdate,todate,period,currency,Name,Value)
returns the historical data for the security list s using additional options specified by one
or more Name,Value pair arguments.

Examples

Retrieve the Daily Closing Price for a Date Range

Create the Bloomberg connection.

c = blp;

history

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Get the daily closing price from August 1, 2010 through August 10, 2010 for the IBM
security.

[d,sec] = history(c, "IBM US Equity”, "LAST PRICE", ...
"8/01/2010","8/10/2010%)

d =
734352 .00 123.55
734353.00 123.18
734354 .00 124 .03
734355.00 124 .56
734356.00 123.58
734359.00 125.34
734360.00 125.19

Sec =

"IBM US Equity”

d contains the numeric representation for the date in the first column and the closing
price in the second column. sec contains the name of the IBM security.

Close the Bloomberg connection.

close(c)

Retrieve the Monthly Closing Price for a Date Range
Create the Bloomberg connection.

c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Get the monthly closing price from August 1, 2010 through December 10, 2010 for the
IBM security.

[d,sec] = history(c, " IBM US Equity”,"LAST PRICE", ...
"8/01/2010","12/10/2010", "monthly™)

5-57

5 Functions — Alphabetical List

5-58

d =
734360.00 125.19
734391.00 121.53
734421.00 131.85
734452 .00 139.78
734482 .00 138.13
sec =

"1BM US Equity”

d contains the numeric representation for the date in the first column and the closing
price in the second column. sec contains the name of the IBM security.

Close the Bloomberg connection.

close(c)

Retrieve the Monthly Closing Price for a Date Range Using U.S. Currency
Create the Bloomberg connection.

c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Get the monthly closing price from August 1, 2010 through December 10, 2010 for the
IBM security in U.S. currency "USD".

[d,sec] = history(c,"IBM US Equity”,"LAST_PRICE", ...
"8/01/2010","12/10/2010", "monthly™,"USD")

d =
734360.00 125.19
734391.00 121 .53
734421 .00 131.85
734452 .00 139.78
734482 .00 138.13

sec =

history

"1BM US Equity”

d contains the numeric representation for the date in the first column and the closing
price in the second column. sec contains the name of the IBM security.

Close the Bloomberg connection.

close(c)

Retrieve the Monthly Closing Price for a Date Range Using U.S. Currency with a Specified
Period

Create the Bloomberg connection.
c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Get the monthly closing price from August 1, 2010 through August 10, 2010 for the
IBM security in U.S. currency "USD". The period values "daily”, "actual ", and
"all_calendar_days" specify returning actual daily data for all calendar days. The
period value "nil_value” specifies filling missing data values with a NaN.

[d,sec] = history(c,"IBM US Equity”,"LAST PRICE", ...
*8/01/2010","8/10/2010" ,{"daily","actual ™, ...
"all_calendar_days”®,"nil_value®},"USD")

d =
734351.00 NaN
734352.00 123.55
734353.00 123.18
734354 .00 124.03
734355.00 124 .56
734356.00 123.58
734357.00 NaN
734358.00 NaN
734359.00 125.34
734360.00 125.19

sec =

5-59

5 Functions — Alphabetical List
P

"1BM US Equity”

d contains the numeric representation for the date in the first column and the closing
price in the second column. sec contains the name of the IBM security.

Close the Bloomberg connection.

close(c)
Retrieve the Weekly Closing Price for a Date Range Using U.S. Currency

Create the Bloomberg connection.
c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Get the monthly closing price from November 1, 2010 through December 23, 2010 for
the IBM security in U.S. currency "USD". Note that the anchor date depends on the date
December 23, 2010 in this case. Because this date is a Thursday, each previous value is
reported for the Thursday of the week in question.

[d,sec] = history(c,"I1BM US Equity”,"LAST PRICE",...
*11/01/2010" ,"12/23/2010" ,{"weekly"}, "USD")

d =
734446 .00 139.39
734453.00 138.71
734460.00 137.69
734467 .00 139.07
734474 .00 138.47
734481.00 137.63
734488.00 137.87
734495 .00 139.15

sec =

"IBM US Equity"

d contains the numeric representation for the date in the first column and the closing
price in the second column. sec contains the name of the IBM security.

5-60

history

Close the Bloomberg connection.

close(c)
Retrieve the Closing Price for a Date Range Using U.S. Currency with the Default Period

Create the Bloomberg connection.
c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Get the closing price from August 1, 2010 through September 10, 2010 for the IBM
security in U.S. currency "USD" with the default period of the data set using []. The
default period of a security depends on the security itself.

[d,sec] = history(c,"I1BM US Equity®,"LAST PRICE", ...
*8/01/2010" ,*9/10/2010",[],"USD")

d =
734352 .00 123.55
734353.00 123.18
734354 .00 124 .03

sec =

"IBM US Equity"

d contains the numeric representation for the date in the first column and the closing
price in the second column. sec contains the name of the IBM security.

Close the Bloomberg connection.

close(c)

Retrieve the Daily Closing Price for a Date Range Using U.S. Currency with Name-Value Pairs
Create the Bloomberg connection.

c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

5-61

5 Functions — Alphabetical List
P

Get the daily closing price from August 1, 2010 through August 10, 2010 for the IBM
security in U.S. currency "USD". The prices are adjusted for normal cash and splits.

[d,sec] = history(c,"IBM US Equity”,"LAST _PRICE", ...
"8/01/2010","8/10/2010","daily","USD", ...
"adjustmentNormal " ,true, . ..
"adjustmentSplit®,true)

d =
734352.00 123.55
734353.00 123.18
734354 .00 124.03
734355.00 124 .56
734356 .00 123.58
734359.00 125.34
734360.00 125.19

sec =

"1BM US Equity"

d contains the numeric representation for the date in the first column and the closing
price in the second column. sec contains the name of the IBM security.

Close the Bloomberg connection.

close(c)

Retrieve the Daily Closing Price Using a CUSIP Number with a Pricing Source
Create the Bloomberg connection.

c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Get the daily closing price from January 1, 2012 through January 1, 2013 for the security
specified with a CUSIP number /cusip/459200101 and with pricing source BGN.

d = history(c, "/cusip/459200101@BGN", "LAST_PRICE", . ..
01/01/2012%,701/01/2013%)

5-62

hish:ry

734871.00 180.69
734872.00 179.96
734873.00 179.10

d contains the numeric representation for the date in the first column and the closing
price in the second column.

Close the Bloomberg connection.

close(c)

Retrieve the Closing Price for a Date Range Using an International Date Format
Create the Bloomberg connection.

c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Return the closing price for the given dates in international format for the security
"MSFT@BGN US Equity".

stDt = datenum("01/06/11%, "dd/mm/yyyy*);

endDt = datenum("01/06/12%, "dd/mm/yyyy");

[d,sec] = history(c, "MSFT@BGN US Equity®","LAST _PRICE", ...
stDt,endDt,{"previous_value®,"all_calendar_days"})

d =
734655.00 22.92
734656 .00 22.72
734657 .00 22 .42
sec =

"MSFT@BGN US Equity"

d contains the numeric representation for the date in the first column and the closing
price in the second column. sec contains the name of the IBM security.

Close the Bloomberg connection.

5-63

5 Functions — Alphabetical List
P

5-64

close(c)

Retrieve the Median Estimated Earnings Per Share Using Override Fields
Create the Bloomberg connection.

c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Retrieve the median estimated earnings per share for AkzoNobel® from October 1, 2010
through October 30, 2010. When specifying Bloomberg override fields, use the string
"overrideFields”. The overrideFields argument must be an n-by-2 cell array,
where the first column is the override field and the second column is the override value.

d = history(c, "AKZA NA Equity”, ...
"BEST_EPS _MEDIAN®,datenum(®01.10.2010",
“dd.mm.yyyy"),datenum("30.10.2010", "dd.mm.yyyy"),
{"daily","calendar"},[], "overrideFields", ...
{"BEST_FPERIOD_OVERRIDE", "BF"})
d =
734412 .00 3.75
734415.00 3.75
734416.00 3.75

d returns the numeric representation for the date in the first column and the median
estimated earnings per share in the second column.

Close the Bloomberg connection.
close(c)

. “Retrieve Bloomberg Historical Data”

Input Arguments

¢ — Bloomberg connection
connection object

history

Bloomberg connection, specified as a connection object created using blp.

s — Security list
string | cell array

Security list, specified as a string for one security or a cell array for multiple securities.
You can specify the security by name or by CUSIP, and with or without the pricing
source.

Data Types: char | cell

T — Bloomberg data fields
string | cell array of strings

Bloomberg data fields, specified as a Bloomberg-specific string for one data field or a cell
array of Bloomberg-specific strings for multiple data fields. For details about the strings
you can specify, see the Bloomberg API Developer’s Guide using the WAPI <GO> option
from the Bloomberg terminal.

Example: {"LAST_PRICE"; "OPEN"}

Data Types: char | cell

period — Periodicity
“daily” | "weekly"

| *monthly® | "quarterly” | "semi_annually”® | ...

Periodicity, specified as a cell array of enumerated strings to denote the period of the
data to return. For example, when period is set to {"daily”, "calendar "}, this
function returns daily data for all calendar days reporting missing data as NaNs. When
period is set to {"actual "}, this function returns the data using the default periodicity
and default calendar reporting missing data as NaNs. The default periodicity depends

on the security. If a security is reported on a monthly basis, the default periodicity is
monthly. The default calendar is actual trading days. This table shows the values for
period.

Valve Description

"daily" Return data for each day.
“"weekly*® Return data for each week.
"monthly* Return data for each month.
"quarterly” Return data for each quarter.
"semi_annually* Return data semiannually.

5-65

5 Functions — Alphabetical List
P

5-66

Value

Description

"yearly*®

Return data for each year.

"actual”

Anchor date specification for an actual
date. The anchor date is the date to which
all other reported dates are related. For
this function, for periodicities other than
daily, enddate is the anchor date.

For example, if you set the period to

weekly and the enddate is a Thursday,
every reported data point would also be a
Thursday, or the nearest prior business day
to Thursday. Similarly, if you set the period
to monthly and the enddate is the 20th of
a month, each reported data point would

be for the 20th of each month in the date
range.

"calendar-”

Anchor date specification for a calendar
year.

"fiscal”

Anchor date specification for a fiscal year.

"non_trading_weekdays

Return data for all weekdays.

"all_calendar_days”

Return data for all calendar days.

"active_days_only*"

Return data for only active trading days.

"previous_value®

Fill missing values with previous values
for dates without trading activity for the
security.

"nil_value-

Fill missing values with a NaN for dates
without trading activity for the security.

Data Types: char | cell

currency — Currency
string

Currency, specified as a string to denote the ISO® code for the currency of the returned
data. For example, to specify output money values in U.S. currency, use USD for this

argument.

history

Data Types: char

fromdate — Beginning date
scalar | vector | matrix | string | cell array

Beginning date for the historical data, specified as a double scalar, double vector, double
matrix, string, or cell array of strings. You can specify dates in any of the formats
supported by datestr and datenum that show a year, month, and day.

Data Types: double | char | cell

todate — End date
scalar | vector | matrix | string | cell array

End date for the historical data, specified as a double scalar, double vector, double
matrix, string, or cell array of strings. You can specify dates in any of the formats
supported by datestr and datenum that show a year, month, and day.

Data Types: double | char | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (*). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example: "adjustmentNormal * , true

"overrideFields" — Override fields
cell array

Override fields, specified as the comma-separated pair consisting of "overrideFields”
and an n-by-2 cell array. The first column of the cell array is the override field and the
second column is the override value.

Example: "overrideFields",
{"IVOL_DELTA LEVEL","DELTA LVL 10";"1VOL_DELTA PUT_OR_CALL","IVOL_PUT";"I1VOL_N

Data Types: cell

"adjustmentNormal = — Historical normal pricing adjustment
true | false

5-67

5 Functions — Alphabetical List
P

Historical normal pricing adjustment, specified as the comma-separated pair consisting
of "adjustmentNormal " and a Boolean to reflect:

* Regular Cash

* Interim

* 1st Interim

* 2nd Interim

* 3rd Interim

* 4th Interim

+ 5th Interim

* Income

+ Estimated

* Partnership Distribution

* Final

* Interest on Capital

* Distribution

* Prorated

For details about these additional name-value pairs, see the Bloomberg API Developer’s
Guide using the WAPI <GO> option from the Bloomberg terminal.

Data Types: logical

"adjustmentAbnormal " — Historical abnormal pricing adjustment
true | false

Historical abnormal pricing adjustment, specified as the comma-separated pair
consisting of "adjustmentAbnormal * and a Boolean to reflect:

* Special Cash

* Liquidation

+ Capital Gains

* Long-Term Capital Gains

* Short-Term Capital Gains

* Memorial

5-68

history

* Return of Capital

* Rights Redemption

* Miscellaneous

* Return Premium

+ Preferred Rights Redemption
* Proceeds/Rights

* Proceeds/Shares

* Proceeds/Warrants

For details about these additional name-value pairs, see the Bloomberg API Developer’s
Guide using the WAPI <GO> option from the Bloomberg terminal.

Data Types: logical

"adjustmentSplit" — Historical split pricing or volume adjustment
true | false

Historical split pricing or volume adjustment, specified as the comma-separated pair
consisting of "adjustmentSplit" and a Boolean to reflect:

* Spin-Offs

+ Stock Splits/Consolidations

* Stock Dividend/Bonus

* Rights Offerings/Entitlement

For details about these additional name-value pairs, see the Bloomberg API Developer’s
Guide using the WAPI <GO> option from the Bloomberg terminal.

Data Types: logical

"adjustmentFol 1owDPDF" — Historical pricing adjustment
true (default) | false

Historical pricing adjustment, specified as the comma-separated pair consisting of
"adjustmentFol lowDPDF" and a Boolean. Setting this name-value pair follows the
DPDF <GO> option from the Bloomberg terminal. For details about these additional
name-value pairs, see the Bloomberg API Developer’s Guide using the WAPI <GO>
option from the Bloomberg terminal.

Data Types: logical

5-69

5 Functions — Alphabetical List
P

5-70

Output Arguments

d — Bloomberg return data
matrix

Bloomberg return data, returned as a matrix with the Bloomberg data. The first column
of the matrix is the numeric representation of the date. The remaining columns contain
the requested data fields. For details about the return data, see the Bloomberg API
Developer’s Guide using the WAPI <GO> option from the Bloomberg terminal.

sec — Security list
cell array

Security list, returned as a cell array of strings for the corresponding securities in s. The
contents of sec are identical in value and order to s. You can return securities with any
of the following identifiers:

* buid

+ cats

+ cins

+ common
* cusip

+ 1isin

+ sedoll
+ sedol2
* sicovam
+ svm

+ ticker (default)
+ wpk

More About
Tips

* You can check data and field availability by using the Bloomberg Excel Add-In.

history

. “Workflow for Bloomberg”

See Also

blp | close | getdata | realtime | timeseries

5-71

5 Functions — Alphabetical List
P

isconnection

Determine Bloomberg connection V3

Syntax

v = isconnection(c)

Description

v = isconnection(c) returns true if c is a valid Bloomberg V3 connection and
false otherwise.

Examples

Validate the Bloomberg Connection
Create the Bloomberg connection.
c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Validate the Bloomberg connection.
v = isconnection(c)
v =
1
V returns true showing that the Bloomberg connection is valid.

Close the Bloomberg connection.
close(c)

. “Connect to Bloomberg”

5-72

isconnection

Input Arguments

¢ — Bloomberg connection
connection object

Bloomberg connection, specified as a connection object created using blp.

Output Arguments

v — Valid Bloomberg connection
true | false

Valid Bloomberg connection, returned as a logical true, 1, or a logical false, 0.

More About

“Workflow for Bloomberg”

See Also
blp | blpsrv | bpipe | close | getdata

5-73

5 Functions — Alphabetical List
P

5-74

lookup

Lookup to find information about securities for Bloomberg connection V3

Syntax

1 = lookup(c,q,reqtype,Name,Value)

Description

I = lookup(c,q,reqtype,Name,Value) retrieves data based on criteria in the query
q for a specific request type reqtype using the Bloomberg connection c. For additional
information about the query criteria and the possible name-value pair combinations, see
the Bloomberg API Developer’s Guide using the WAPI <GO> option from the Bloomberg
terminal.

Examples

Look Up a Security

Use the Security Lookup to retrieve information about the IBM corporate bond. For
details about Bloomberg and the parameter values you can set, see the Bloomberg API
Developer’s Guide using the WAPI <GO> option from the Bloomberg terminal.

Connect to Bloomberg.
c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Retrieve the instrument data for an IBM corporate bond with a maximum of 20 rows of
data.

insts = lookup(c, "IBM", "instrumentListRequest”, "maxResults®,20, ...
"yellowKeyFilter®,"YK_FILTER_CORP", ...
"languageOverride”, "LANG_OVERRIDE_NONE*®)

lookup

security: {20x1 cell}
description: {20x1 cell}

The Security Lookup returns the security names and descriptions.

Display the IBM corporate bond names.

insts.security

ans =
" 1BM<corp>*

"IBM GB USD SR 10Y<corp>*
"IBM GB USD SR 3Y<corp>*
"IBM GB USD SR 30Y<corp>*
"IBM GB USD SR 5Y<corp>*
“IBM CDS USD SR 5Y<corp>*
"BLO37645<corp>*
“IBM CDS USD SR 3Y<corp>*
“IBM CDS USD SR 1Y<corp>*
"BL106695<corp>*
"IBM CDS USD SR 10Y<corp>*
“IBM CDS USD SR 4Y<corp>*
“IBM CDS USD SR 6Y<corp>*
“IBM CDS USD SR 30Y<corp>*
“IBM CDS USD SR 7Y<corp>*
“IBM CDS USD SR 15Y<corp>*
"BF106693<corp>*

IBMTR<corp>

“IBM CDS USD SR 2Y<corp>*
“IBM CDS USD SR OM<corp>*

Display the IBM corporate bond descriptions.

insts.description

ans =
"International
"International
"International
"International
"International
"International

Business
Business
Business
Business
Business
Business

Machines
Machines
Machines
Machines
Machines
Machines

"IBM Loan USD REV 11/10/2017*

"International
"International

Business
Business

Machines
Machines

Corp (Multiple Matches)*®

Corp Generic Benchmark 10Y Corporate”
Corp Generic Benchmark 3Y Corporate”
Corp Generic Benchmark 30Y Corporate”
Corp Generic Benchmark 5Y Corporate”
Corp*

Corp*
Corp*

5-75

5 Functions — Alphabetical List

5-76

"IBM Loan JPY TL 06/30/2017*
"International Business Machines Corp”
"International Business Machines Corp”
"International Business Machines Corp”
"International Business Machines Corp*
"International Business Machines Corp”
"International Business Machines Corp”
"IBM Loan JPY DEAL 06/30/2017*

"IBM Corp-Backed Interest Rate Putable Underlying Trust 2006-2°
"International Business Machines Corp”
"International Business Machines Corp”

Close the Bloomberg connection.

close(c)
Look Up a Curve

Use the Curve Lookup to retrieve information about the "GOLD" related curve
"CD1016". For details about Bloomberg and the parameter values you can set, see the
Bloomberg API Developer’s Guide using the WAPI <GO> option from the Bloomberg
terminal.

Connect to Bloomberg.
c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Retrieve the curve data for the credit default swap subtype of corporate bonds for a
"GOLD" related curve "CD1016". Return a maximum of 10 rows of data for the U.S. with
"USD" currency.

curves = lookup(c, "GOLD", "curveListRequest”, "maxResults”,10, ...
"countryCode®, "US", "currencyCode®, "USD", . ..
“curveid®,"CD1016", "type", "CORP", "subtype”, "CDS")

curves

curve: {"YCCD1016 Index"}
description: {"Goldman Sachs Group Inc/The"}
country: {"US"}
currency: {"USD"}
curveid: {"CD1016"}
type: {"CORP"}

lookup

subtype: {"CDS"}
publisher: {"Bloomberg-”}
bbgid: {""}

One row of data displays as Bloomberg curve name "YCCD1016 Index" with Bloomberg
description "Goldman Sachs Group Inc/The” in the U.S. with "USD" currency. The
Bloomberg short-form identifier for the curve is *CD1016". Bloomberg is the publisher
and the bbgid is blank.

Close the Bloomberg connection.
close(c)
Look Up a Government Security

Use the Government Security Lookup to retrieve information for United States Treasury
bonds. For details about Bloomberg and the parameter values you can set, see the
Bloomberg API Developer’s Guide using the WAPI <GO> option from the Bloomberg
terminal.

Connect to Bloomberg.
c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Filter government security data with ticker filter of "T" for a maximum of 10 rows of
data.

govts = lookup(c,"T", "govtListRequest”, "maxResults®,10, ...
"partialMatch®,false)

govts
parseky: {10x1 cell}

name: {10x1 cell}

ticker: {10x1 cell}

The Government Security Lookup returns parseky data, the name and ticker of the
United States Treasury bonds.

Display the parseky data.

5-77

5 Functions — Alphabetical List

govts._parseky

ans =
"912828VS Govt*
"912828RE Govt*
"912810RC Govt*
"912810RB Govt*
"912828VvVU Govt*
"912828VV Govt*
"912828VB Govt*
"912828VR Govt*
"912828VW Govt*
"912828vQ Govt*

Display the names of the United States Treasury bonds.
govts.name

ans =
"United States Treasury Note/Bond*
"United States Treasury Note/Bond®
"United States Treasury Note/Bond*
"United States Treasury Note/Bond®
"United States Treasury Note/Bond*
"United States Treasury Note/Bond*
"United States Treasury Note/Bond®
"United States Treasury Note/Bond*
"United States Treasury Note/Bond®
"United States Treasury Note/Bond*

Display the tickers of the United States Treasury bonds.
govts._ticker

ans =
.-
.-
.-
.-
.-
.-
.-
.-
.-
.-

5-78

lookup

Close the Bloomberg connection.

close(c)

Input Arguments

¢ — Bloomberg connection
connection object

Bloomberg connection, specified as a connection object created using blp.

q — Keyword query

string

Keyword query, specified as a string containing one or more strings for each item for
which information is requested. For example, the keyword query string can be a security,
a curve type, or a filter ticker.

Data Types: char

reqtype — Request type
"instrumentListRequest

" | "curveListRequest” | "govtListRequest”

Request type, specified as the above enumerated strings to denote the type of information
request. " instrumentListRequest” denotes a security or instrument lookup request.
"curvelListRequest” denotes a curve lookup request. "govtListRequest” denotes a
government lookup request for government securities.

Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (*). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example: "maxResults”®, 20, "yellowKeyFilter®, "YK_FILTER_CORP",
"languageOverride®, "LANG_OVERRIDE_NONE®, "countryCode*, "US",
"currencyCode”, "USD", "curveid®, "CD1016", "type”, "CORP", "subtype”,
"CDS*, "partialMatch®, false

5-79

5 Functions — Alphabetical List
P

5-80

"maxResults” — Number of rows in result data
scalar

Number of rows in the result data, specified as a scalar to denote the total maximum
number of rows of information to return. Result data can be one or more rows of data no
greater than the number specified.

Data Types: double

"yellowKeyFilter™ — Bloomberg yellow key filter
string

Bloomberg yellow key filter, specified as a unique string to denote the particular yellow
key for government securities, corporate bonds, equities, and commodities, for example.
Data Types: char

" languageOverride” — Language override

string

Language override, specified as a unique string to denote a translation language for the
result data.

Data Types: char

"countryCode” — Country code
string

Country code, specified as a string to denote the country for the result data.
Data Types: char

"currencyCode” — Currency code
string

Currency code, specified as a string to denote the currency for the result data.
Data Types: char

"curvelD" — Bloomberg short-form identifier for curve
string

Bloomberg short-form identifier for a curve, specified as a string.

Data Types: char

lookup

"type” — Bloomberg market sector type
string

Bloomberg market sector type corresponding to the Bloomberg yellow keys, specified as a
string.
Data Types: char

"subtype” — Bloomberg market sector subtype
string

Bloomberg market sector subtype, specified as a string to further delineate the market
sector type.
Data Types: char

"partialMatch® — Partial match on ticker
true | false

Partial match on ticker, specified as true or False. When set to true, you can filter
securities by setting q to a query string such as "T*". When set to false, the securities
are unfiltered.

Data Types: logical

Output Arguments

I — Lookup information
structure

Lookup information, returned as a structure containing set properties depending on the
request type. For a list of properties and their description, see the following tables.

The properties for the " instrumentListRequest” request type are as follows.

Property Description
security Security name
description Security long name

The properties for the "curveListRequest” request type are as follows.

5-81

5 Functions — Alphabetical List
P

Property Description

curve Bloomberg curve name

description Bloomberg description

country Country code

currency Currency code

curveid Bloomberg short-form identifier for the curve
type Bloomberg market sector type

subtype Bloomberg market sector subtype
publisher Bloomberg is the publisher

bbgid Bloomberg identifier

The properties for the "govtListRequest” request type are as follows.

Property Description

parseky Bloomberg security identifier (ticker or CUSIP, for
example), price source, and source key (Bloomberg
yellow key).

name Government security name

ticker Government security ticker

More About

. “Workflow for Bloomberg”

See Also

blp | close | getdata | history | realtime | timeseries

5-82

realtime

realtime

Real-time data for Bloomberg connection V3

Syntax

d = realtime(c,s,T)
[subs,t] = realtime(c,s,f,eventhandler)

Description

d = realtime(c,s,T) returns the data for the given connection c, security list s, and
requested fields F.

[subs,t] = realtime(c,s,T,eventhandler) returns the subscription list subs and
the timer t associated with the real-time event handler for the subscription list. Given

connection c, the realtime function subscribes to a security or securities S and requests
fields f, to update in real time while running an event handler eventhandler.

Examples

Retrieve Data for One Security

Retrieve a snapshot of data for one security only.
Create the Bloomberg connection.

c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Retrieve the last trade and volume of the IBM security.

d = realtime(c,"IBM US Equity”,{"Last _Trade","Volume®})

5-83

5 Functions — Alphabetical List
P

5-84

LAST_TRADE: "181.76"
VOLUME: *"7277793"

Close the Bloomberg connection.

close(c)
Retrieve Data for One Security Using the Event Handler v3stockticker

You can create your own event handler function to process Bloomberg data. For this
example, use the event handler v3stockticker that returns Bloomberg stock tick data.

Create the Bloomberg connection.
c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Retrieve the last trade and volume for the IBM security using the event handler
v3stockticker.

v3stockticker requires the input argument f of realtime to be "Last _Trade” ,
"Volume®, or both.

[subs,t] = realtime(c,"IBM US Equity”,{"Last Trade","Volume"}, ...
"v3stockticker®)

subs =
com.bloomberglp.blpapi.SubscriptionList@79f07684
Timer Object: timer-2
Timer Settings
ExecutionMode: fixedRate
Period: 0.05
BusyMode: drop

Running: on

Cal lbacks

realtime

TimerFcn: 1x4 cell array
ErrorfFcn: =*
StartFcn: **
StopFcn: **
** IBM US Equity ** 100 @ 181.81 29-Oct-2013 15:48:50

** IBM US Equity ** 100 @ 181.795 29-0Oct-2013 15:48:50
** IBM US Equity ** 100 @ 181.8065 29-0ct-2013 15:48:51

realtime returns the Bloomberg subscription list object subs and the MATLAB timer
object with its properties. Then, realtime returns the stock tick data for the IBM
security with the volume and last trade price.

Real-time data continues to display until you execute the stop or close function.
Close the Bloomberg connection.

close(c)

Retrieve Data for Multiple Securities Using the Event Handler v3stockticker

You can create your own event handler function to process Bloomberg data. For this
example, use the event handler v3stockticker that returns Bloomberg stock tick data.

Create the Bloomberg connection.
c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Retrieve the last trade and volume for IBM and Ford Motor Company securities.

v3stockticker requires the input argument F of realtime to be "Last_Trade",
"Volume®, or both.

[subs,t] = realtime(c,{"I1BM US Equity","F US Equity"},...
{"Last_Trade", "Volume"}, "v3stockticker™)

subs =

com.bloomberglp.blpapi.SubscriptionList@6cl1066f6

5-85

5 Functions — Alphabetical List

5-86

Timer Object: timer-3

Timer Settings
ExecutionMode: fixedRate
Period: 0.05
BusyMode: drop
Running: on

Callbacks
TimerFcn: 1x4 cell array
ErrorFcn: "
StartFcn: **
StopFcn: **

** IBM US Equity ** 32433 @ 181.85 29-0ct-2013 15:50:05
** IBM US Equity ** 200 @ 181.85 29-0Oct-2013 15:50:05
** IBM US Equity ** 100 @ 181.86 29-0Oct-2013 15:50:05
** F US Equity ** 300 @ 17.575 30-Oct-2013 10:14:06

** F US Equity ** 100 @ 17.57 30-0Oct-2013 10:14:06

** F US Equity ** 100 @ 17.5725 30-Oct-2013 10:14:06

realtime returns the Bloomberg subscription list object subs and the MATLAB timer
object with its properties. Then, realtime returns the stock tick data for the IBM and
Ford Motor Company securities with the last trade price and volume.

Real-time data continues to display until you use the stop or close function.

Close the Bloomberg connection.

close(c)

Retrieve Data for One Security Using the Event Handler v3showtrades

You can create your own event handler function to process Bloomberg data. For this
example, use the event handler v3showtrades that creates a figure showing requested

data for a security.

Create the Bloomberg connection.

c = blp;

realtime

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Retrieve volume, last trade, bid, ask, and volume weight adjusted price (VWAP) data for
the IBM security using the event handler v3showtrades.

v3showtrades requires the input argument F of realtime to be any combination of:
"Last_Trade", "Bid", "Ask", "Volume~, and "VWAP".

[subs,t] = realtime(c,"IBM US Equity”,...
{"Last_Trade","Bid", "Ask", "Volume", "VWAP"}, ...
"v3showtrades*®)

subs =

com_bloomberglp.blpapi.SubscriptionList@5cl7dcdb

Timer Object: timer-4

Timer Settings
ExecutionMode: fixedRate
Period: 0.05
BusyMode: drop
Running: on

Cal Ibacks
TimerFcn: 1x4 cell array
ErrorfFcn: =*
StartFcn: **
StopFcn: *°*

realtime returns the Bloomberg subscription list object subs and the MATLAB timer
object with its properties. Then, v3showtrades displays a figure showing volume, last
trade, bid, ask, and volume weight adjusted price (VWAP) data for IBM.

5-87

5 Functions — Alphabetical List
P

n V3 Show Trades Demo | — ii (=] iiﬁi
File Edit View Inset Tools Desktop Window Help o
ol IBM US Equity

E}D@ 18187 - | I | [| | | | I
100 @ 181.85 [i i | | i i i : i
100 @ 181.87 : ! ! ; ; ; ; : !

100 @ 181.89 : : : ; i i i : :

200 @ 181,855 i i ! E E i i i i
100@ 181.85 : ; 1 ;] ; ; ' i q
100 @ 181.85 : : : : : ! ! : sk 181.89
100 @ 181.85 : E : : E : : o
100 @ 121.85 ' ' ' : ' ' : ' '
e VWAP:1181.7382 | : : ; : j
100 @ 181.85 : i i i i : ! : i
100 @ 181.85 . : :] ! ; n o :

100 @ 181.85 i i i i i i i i i
100 %151_55 : h : : ; ; ' Trade: 181.87
100 @ 181.85 : : : ; i i i : :

100 @ 181.85 : i i i i w : i
100 @ 181.85 i ; H : : :) : ;

100 %151.35 : i : : : . Bid; 181.85 :

100 @ 181.85 5 E E E E E E : :

100 @ 121.85 ' ' ' : ' ' : ' '

100 @ 181.85 : ; : : : : . . ;

100 @ 181.85 ! i : : : ! : ! i
MR, O i i i i i i i i i

181.72 181.74 181.76 181.78 181.8 181.82 151.84 181.86 181.88 181.9 181.92
Last Trade Volume: 300 30-Oct-2013 10:18:21

Real-time data continues to display until you execute the stop or close function.

Close the Bloomberg connection.

5-88

realtime

close(c)
Retrieve Data for One Security Using the Event Handler v3pricevol

You can create your own event handler function to process Bloomberg data. For this
example, use the event handler v3pricevol that creates a figure showing last price and
volume data for a security.

Create the Bloomberg connection.
c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Retrieve last price and volume data for the IBM security using event handler
v3pricevol.

v3pricevol requires the input argument F of realtime to be "Last_Price” ,
"Volume®, or both.

[subs,t] = realtime(c,"I1BM US Equity”,{"Last Price", "Volume®}, ...
"v3pricevol®)

subs =

com.bloomberglp.blpapi.SubscriptionList@16f66676

Timer Object: timer-5

Timer Settings
ExecutionMode: fixedRate
Period: 0.05
BusyMode: drop
Running: on

Callbacks
TimerFcn: 1x4 cell array
ErrorFcn: **
StartFcn: **
StopFcn: **

5-89

5 Functions — Alphabetical List
P

real time returns the Bloomberg subscription list object subs and the MATLAB timer
object with its properties. Then, v3pricevol displays a figure showing last price and
volume data for IBM.

B V3 Price Volume Demo - IBM US Equity ==
Eile Edit View Inset Tools [Desktop Window Help o
Ndde | | RRODEWAL- S| 08 oD
181.85
181.8
181.75
181.7 ;
e i i i i i i
0 20 40 60 a0 100 120 140
3000 T T
2000
1000
0
1] 50 100 150
200 @ 181.73 30-Oct-2013 10:16:57

Real-time data continues to display until you execute the stop or close function.

Close the Bloomberg connection.

5-90

realtime

close(c)

. “Retrieve Bloomberg Real-Time Data”

Input Arguments

¢ — Bloomberg connection
connection object

Bloomberg connection, specified as a connection object created using blp.

s — Security list
string | cell array

Security list, specified as a string for one security or a cell array for multiple securities.
You can specify the security by name or by CUSIP, and with or without the pricing
source.

Data Types: char | cell

T — Bloomberg data fields
string | cell array

Bloomberg data fields, specified as a Bloomberg-specific string for one data field or a cell
array of Bloomberg-specific strings for multiple data fields. For details about the strings
you can specify, see the Bloomberg API Developer’s Guide using the WAPI <GO> option
from the Bloomberg terminal.

Example: {"LAST_PRICE"; "OPEN"}
Data Types: char | cell

eventhandler — Event handler
string

Event handler, specified as a string denoting the name of an event handler function that
you define. You can define an event handler function to process any type of real-time
Bloomberg events. The specified event handler function runs every time the timer fires.

Data Types: char

5-91

5 Functions — Alphabetical List
P

5-92

Output Arguments

d — Bloomberg return data
structure

Bloomberg return data, returned as a structure with the Bloomberg data. For details
about the returned data, see the Bloomberg API Developer’s Guide using the WAPI
<GO> option from the Bloomberg terminal.

subs — Bloomberg subscription
object

Bloomberg subscription, returned as a Bloomberg object. For details about this object, see
the Bloomberg API Developer’s Guide using the WAPI <GO> option from the Bloomberg
terminal.

t — MATLAB timer

object

MATLAB timer, returned as a MATLAB object. For details about this object, see timer.

More About

. “Workflow for Bloomberg”

. “Writing and Running Custom Event Handler Functions” on page 1-22

See Also

blp | close | getdata | history | stop | timeseries

stop

stop

Unsubscribe real-time requests for Bloomberg connection V3

Syntax

stop(c,subs,t)
stop(c,subs,[].,s)

Description

stop(c,subs, t) unsubscribes real-time requests associated with the Bloomberg
connection € and subscription list subs. t is the timer associated with the real-time
callback for the subscription list.

stop(c,subs, [],s) unsubscribes real-time requests for each security s on the
subscription list subs. The timer input is empty.

Examples

Stop Real-Time Requests

Unsubscribe to real-time data for one security.
Create the Bloomberg connection.

c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Retrieve the last trade and volume for the IBM security using the event handler
v3stockticker.

v3stockticker requires the input argument ¥ of realtime to be "Last_Trade",
"Volume®, or both.

[subs,t] = realtime(c,"I1BM US Equity”,{"Last Trade","Volume®}, ...

5-93

5 Functions — Alphabetical List
P

"v3stockticker®);
** |BM US Equity ** 100 @ 181.81 29-Oct-2013 15:48:50

** IBM US Equity ** 100 @ 181.795 29-0Oct-2013 15:48:50
** IBM US Equity ** 100 @ 181.8065 29-0ct-2013 15:48:51

realtime returns the stock tick data for the IBM security with the volume and last
trade price.

Stop the real-time data requests for the IBM security using the Bloomberg subscription
subs and MATLAB timer object t.

stop(c,subs,t)

Close the Bloomberg connection.
close(c)

Stop Real-Time Requests for a Security List
Create the Bloomberg connection.

c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Retrieve the last trade and volume for the security list S using the event handler
v3stockticker. s contains securities for IBM, Google, and Ford Motor Company.

v3stockticker requires the input argument f of realtime to be "Last_Trade”,
*Volume™®, or both.

s = {"IBM US Equity","GO0OG US Equity","F US Equity"};
[subs,t] = realtime(c,s,{ "Last _Trade","Volume®"}, "v3stockticker®);

** IBM US Equity ** 100 @ 181.81 29-Oct-2013 15:48:50
** IBM US Equity ** 100 @ 181.795 29-0Oct-2013 15:48:50
** IBM US Equity ** 100 @ 181.8065 29-0ct-2013 15:48:51

realtime returns the stock tick data for the securities list s with the volume and last
trade price.

5-94

stop

Stop the real-time data requests for the securities list s using the Bloomberg subscription
subs.

stop(c,subs,[].s)
Close the Bloomberg connection.
close(c)

. “Retrieve Bloomberg Real-Time Data”

Input Arguments

¢ — Bloomberg connection
connection object

Bloomberg connection, specified as a connection object created using blp.

subs — Bloomberg subscription
object

Bloomberg subscription, specified as a Bloomberg object. For details about this object, see
the Bloomberg API Developer’s Guide using the WAPI <GO> option from the Bloomberg
terminal.

t — MATLAB timer
object

MATLAB timer, specified as a MATLAB object. For details about this object, see timer.

s — Security list
string | cell array

Security list, specified as a string for one security or a cell array for multiple securities.
You can specify the security by name or by CUSIP, and with or without the pricing
source.

Data Types: char | cell

More About

. “Workflow for Bloomberg”

5-95

5 Functions — Alphabetical List

See Also

blp | close | getdata | history | realtime | timeseries

5-96

tahistory

tahistory

Return historical technical analysis from Bloomberg connection V3

Syntax

d = tahistory(c)
d = tahistory(c,s,startdate,enddate,study,period,Name,Value)
Description

d = tahistory(c) returns the Bloomberg V3 session technical analysis data study and
element definitions.

d = tahistory(c,s,startdate,enddate,study,period,Name,Value) returns
the Bloomberg V3 session technical analysis data study and element definitions with
additional options specified by one or more Name,Value pair arguments.

Examples

Request the Bloomberg Directional Movement Indicator (DMI) Study for a Security

Return all available Bloomberg studies and use the DMI study to run a technical
analysis for a security.

Create the Bloomberg connection.
c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

List the available Bloomberg studies.

d = tahistory(c)

d =

5-97

5 Functions — Alphabetical List

dmiStudyAttributes: [1x1 struct]
smavgStudyAttributes: [1x1 struct]
bollStudyAttributes: [1x1 struct]
maoStudyAttributes: [1x1 struct]
fgStudyAttributes: [1x1 struct]
rsiStudyAttributes: [1x1 struct]
macdStudyAttributes: [1x1 struct]
tasStudyAttributes: [1x1 struct]
emavgStudyAttributes: [1x1 struct]
maxminStudyAttributes: [1x1 struct]
ptpsStudyAttributes: [1x1 struct]
cmciStudyAttributes: [1x1 struct]
wlprStudyAttributes: [1x1 struct]
wmavgStudyAttributes: [1x1 struct]
trenderStudyAttributes: [1x1 struct]
gocStudyAttributes: [1x1 struct]
kltnStudyAttributes: [1x1 struct]
momentumStudyAttributes: [1x1 struct]
rocStudyAttributes: [1x1 struct]
maeStudyAttributes: [1x1 struct]
hurstStudyAttributes: [1x1 struct]
chkoStudyAttributes: [1x1 struct]
teStudyAttributes: [1x1 struct]
vmavgStudyAttributes: [1x1 struct]
tmavgStudyAttributes: [1x1 struct]
atrStudyAttributes: [1x1 struct]
rexStudyAttributes: [1x1 struct]
adoStudyAttributes: [1x1 struct]
alStudyAttributes: [1x1 struct]
etdStudyAttributes: [1x1 struct]
vatStudyAttributes: [1x1 struct]
tvatStudyAttributes: [1x1 struct]
pdStudyAttributes: [1x1 struct]
rvStudyAttributes: [1x1 struct]
ipmavgStudyAttributes: [1x1 struct]
pivotStudyAttributes: [1x1 struct]
orStudyAttributes: [1x1 struct]
pcrStudyAttributes: [1x1 struct]
bsStudyAttributes: [1x1 struct]

d contains structures pertaining to each available Bloomberg study.

Display the name-value pairs for the DMI study.

d._dmiStudyAttributes

5-98

tahistory

ans =

period: [1x104 char]
priceSourceHigh: [1x123 char]
priceSourceLow: [1x121 char]
priceSourceClose: [1x125 char]

Obtain more information about the period property.
d.dmiStudyAttributes._period

ans =

DEFINITION period {

Min Value = 1

Max Value 1

TYPE Int64
} // End Definition: period

Run the DMI study for the IBM security for the last month with period equal to 14, the
high price, the low price, and the closing price.

d = tahistory(c, "IBM US Equity”,floor(now)-30,floor(now), "dmi~, ...
"all_calendar_days”,"period~®,14, ...
"priceSourceHigh®, "PX_HIGH", . ..
"priceSourcelLow”, "PX_LOW*", "priceSourceClose®, "PX_LAST")

date: [31x1 double]
DMI_PLUS: [31x1 double]
DMI_MINUS: [31x1 double]
ADX: [31x1 double]
ADXR: [31x1 double]

d contains a studyDataTable with one studyDataRow for each interval returned.

Display the first five dates in the returned data.
d.date(1:5,1)

ans =

5-99

5 Functions — Alphabetical List
P

735507 .00
735508.00
735509.00
735510.00
735511.00

Display the first five prices in the plus DI line.
d.DMI_PLUS(1:5,1)

ans =

18.92
17.84
16.83
15.86
15.63

Display the first five prices in the minus DI line.
d.DMI_MINUS(1:5,1)

ans =

30.88
29.12
28.16
30.67
29.24

Display the first five values of the Average Directional Index.
d.ADX(1:5,1)
ans =

22.15
22.28
22.49
23.15
23.67

Display the first five values of the Average Directional Movement Index Rating.

d.ADXR(1:5,1)

5-100

tahistory

ans =

25.20
25.06
25.05
25.60
26.30

Close the Bloomberg connection.

close(c)

Request the Bloomberg Directional Movement Indicator (DMI) Study for a Security with a Pricing
Source

Run a technical analysis to return the DMI study for a security with a pricing source.
Create the Bloomberg connection.
c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Run the DMI study for the Microsoft security with pricing source ETPX for the last month
with period equal to 14, the high price, the low price, and the closing price.

d = tahistory(c, "MSFT@ETPX US Equity",Ffloor(now)-30,Floor(now), ...
"dmi*,"all_calendar_days", "period”,14,...
"priceSourceHigh®,*PX HIGH", "priceSourceLow", "PX LOW", ...
"priceSourceClose”, "PX_LAST")

d =

date: [31x1 double]
DMI_PLUS: [31x1 double]
DMI_MINUS: [31x1 double]
ADX: [31x1 double]
ADXR: [31x1 double]

d contains a studyDataTable with one studyDataRow for each interval returned.

Display the first five dates in the returned data.

d.date(1:5,1)

5-101

5 Functions — Alphabetical List
P

ans =

735507 .00
735508.00
735509.00
735510.00
735511.00

Display the first five prices in the plus DI line.
d.DMI_PLUS(1:5,1)
ans =

28.37
30.63
32.72
30.65
29.37

Display the first five prices in the minus DI line.
d.DMI_MINUS(1:5,1)
ans =

21.97
21.17
19.47
18.24
17.48

Display the first values of the Average Directional Index.
d.ADX(1:5,1)
ans =

13.53

13.86

14.69

15.45
16.16

Display the first five values of the Average Directional Movement Index Rating.

5-102

tahistory

d.ADXR(1:5,1)
ans =

15.45
15.36
15.53
15.85
16.37

Close the Bloomberg connection.

close(c)

Input Arguments

¢ — Bloomberg connection
connection object

Bloomberg connection, specified as a connection object created using blp.

s — Security

string

Security, specified as a string for a single Bloomberg security.
Data Types: char

startdate — Start date
scalar | string

Start date, specified as a scalar or string to denote the start date of the date range for the
returned tick data.

Example: floor(now-1)

Data Types: double | char

enddate — End date
scalar | string

End date, specified as a scalar or string to denote the end date of the date range for the
returned tick data.

5-103

5 Functions — Alphabetical List
P

Example: floor (now)

Data Types: double | char

study — Study type

string

Study type, specified as a string to denote the study to use for historical analysis.

Data Types: char

period — Periodicity
"daily” | "weekly"

monthly® | "quarterly

" | "semi_annually”® | ...
Periodicity, specified as a cell array of enumerated strings to denote the period of the
data to return. For example, when period is set to {"daily”, "calendar "}, this
function returns daily data for all calendar days reporting missing data as NaNs. When
period is set to {"actual "}, this function returns the data using the default periodicity
and default calendar reporting missing data as NaNs. The default periodicity depends

on the security. If a security is reported on a monthly basis, the default periodicity is
monthly. The default calendar is actual trading days. This table shows the values for

period.

Value Description

“daily” Return data for each day.

"weekly*" Return data for each week.
"monthly* Return data for each month.
"quarterly” Return data for each quarter.
"semi_annually* Return data semiannually.

"yearly*® Return data for each year.

"actual*” Anchor date specification for an actual

date. The anchor date is the date to which
all other reported dates are related. For
this function, for periodicities other than
daily, enddate is the anchor date.

For example, if you set the period to
weekly and the enddate is a Thursday,
every reported data point would also be a

5-104

tahistory

Value

Description

Thursday, or the nearest prior business day
to Thursday. Similarly, if you set the period
to monthly and the enddate is the 20th of
a month, each reported data point would

be for the 20th of each month in the date
range.

"calendar-”

Anchor date specification for a calendar
year.

"fiscal”

Anchor date specification for a fiscal year.

"non_trading_ weekdays

Return data for all weekdays.

"all_calendar_days”

Return data for all calendar days.

"active_days_only*"

Return data for only active trading days.

"previous_value*

Fill missing values with previous values
for dates without trading activity for the
security.

"nil_value*

Fill missing values with a NaN for dates
without trading activity for the security.

Data Types: char | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (" 7). You can specify several name and value pair arguments in any order as

Namel,Valuel, ... ,NameN,ValueN.

Example: "period”, 14, "priceSourceHigh”, "PX_HIGH",
"priceSourceLow”, "PX_LOW", "priceSourceClose”, "PX LAST"

Note For details about the full list of name-value pair arguments, see the Bloomberg tool
located at C:\bIp\API\APIv3\bin\BBAPIDemo.exe.

"period” — Period
scalar

5-105

5 Functions — Alphabetical List

5-106

Period, specified as a scalar. For details about the period, see the Bloomberg API
Developer’s Guide using the WAPI <GO> option from the Bloomberg terminal.

Data Types: double

"priceSourceHigh” — High price

string

High price, specified as a string. For details about the period, see the Bloomberg API
Developer’s Guide using the WAPI <GO> option from the Bloomberg terminal.

Data Types: char

"priceSourceLow”™ — Low price
string

Low price, specified as a string. For details about the period, see the Bloomberg API
Developer’s Guide using the WAPI <GO> option from the Bloomberg terminal.

Data Types: char

"priceSourceClose” — Closing price
string

Closing price, specified as a string. For details about the period, see the Bloomberg API
Developer’s Guide using the WAPI <GO> option from the Bloomberg terminal.

Data Types: char

Output Arguments

d — Technical analysis return data
structure

Technical analysis return data, returned as a structure. For details about the possible
returned data, see the Bloomberg API Developer’s Guide using the WAPI <GO> option
from the Bloomberg terminal.

More About

. “Workflow for Bloomberg”

tahistory

See Also

blp | close | getdata | history | realtime | timeseries

5-107

5 Functions — Alphabetical List
P

5-108

timeseries

Intraday tick data for Bloomberg connection V3

Syntax

= timeseries(c,s,date)
timeseries(c,s,date, interval,field)
= timeseries(c,s,date,[],field,options,values)

O 0 o
1

= timeseries(c,s,{startdate,enddate})

= timeseries(c,s,{startdate,enddate}, interval,field)
timeseries(c,s,{startdate,enddate},[],field)

= timeseries(c,s,{startdate,enddate},[],field,options,values)

0O 0 0o
1

Description

d = timeseries(c,s,date) retrieves raw tick data d for the security s and
connection object C for a specific date date.

d = timeseries(c,s,date, interval, field) retrieves raw tick data d for the

security s and a specific date date aggregated into intervals of interval for field
field.

d = timeseries(c,s,date,[],field,options,values) retrieves raw tick data d
for a specific date date without an aggregation interval for field Field with the specified
options options and corresponding values values.

d = timeseries(c,s,{startdate,enddate}) retrieves raw tick data d for security
s where startdate is the starting date and enddate is the ending date of the date
range.

d = timeseries(c,s,{startdate,enddate}, interval,field) retrieves raw tick
data d for a specific date range aggregated into intervals of interval for field Field.

d = timeseries(c,s,{startdate,enddate},[],field) retrieves raw tick data d
for a specific date range without an aggregation interval for field Field.

timeseries

d = timeseries(c,s,{startdate,enddate},[],field,options,values)
retrieves raw tick data d for a specific date range without an aggregation interval for a
specific field with specified options options and corresponding values values.

Examples

Retrieve Time-Series Tick Data for a Specific Date
Create the Bloomberg connection.
c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Retrieve today’s trade tick series for the IBM security.
d = timeseries(c, "IBM US Equity”,floor(now))
d =
"TRADE" [735537.40] [181.69] [100.00]

" TRADE" [735537.40] [181.69] [100.00]
" TRADE" [735537.40] [181.68] [100.00]

d contains the tick type in the first column, the numeric representation of the date and
time in the second column, the tick value in the third column, and the tick size in the
fourth column. Here, the first row shows that 100 IBM shares sold for $181.69 today.

Close the Bloomberg connection.

close(c)

Retrieve Time-Series Tick Data for a Specific Date Using a Security with a Pricing Source
Create the Bloomberg connection.

c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

5-109

5 Functions — Alphabetical List
P

Retrieve today’s trade tick series for the Microsoft security with pricing source ETPX.

d

timeseries(c, "MSFT@ETPX US Equity”,floor(now))
d =
"TRADE" [735537.40] [35.53] [100.00]

" TRADE" [735537.40] [35.55] [200.00]
" TRADE" [735537.40] [35.55] [100.00]

d contains the tick type in the first column, the numeric representation of the date and
time in the second column, the tick value in the third column, and the tick size in the
fourth column. Here, the first row shows that 100 Microsoft shares are sold for $35.53
today.

Close the Bloomberg connection.

close(c)

Retrieve Time-Series Tick Data for a Specific Date Using a Time Interval with a Specific Field
Create the Bloomberg connection.

c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Retrieve today’s trade tick series for the IBM security aggregated into 5-minute
intervals.

d = timeseries(c,"I1BM US Equity”,floor(now),5, " Trade")

d =

Columns 1 through 7

735537.40 181.69 181.99 180.10 181.84 252322.00 861.00
735537.40 181.90 181.97 181.57 181.65 78570.00 535.00
735537.40 181.73 182.18 181.58 182.07 124898.00 817.00
Column 8

45815588.00
14282076.00
22710954 .00

5-110

timeseries

The columns in d contain the following:

* Numeric representation of date and time

* Open price

* High price

* Low price

* Closing price

* Volume of ticks

* Number of ticks

+ Total tick value in the bar

Here, the first row of data shows that on today’s date the open price is $181.69, the high
price is $181.99, the low price is $180.10, the closing price is $181.84, the volume is

252,322, the number of ticks is 861, and the total tick value in the bar is $45,815,588.
The next row shows tick data for 5 minutes later.

Close the Bloomberg connection.
close(c)
Retrieve Time-Series Tick Data for a Specific Date with a Specific Field and an Option and Value

Create the Bloomberg connection.
c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Retrieve today’s trade tick series for the "F US Equity” security without specifying the
aggregation parameter. Additionally, return the condition codes.

d timeseries(c,"F US Equity”,floor(now),[], " "Trade", ...

"includeConditionCodes”, "true™)

"TRADE" [735556.57] [17.12] [100.00] "R6,1S"

5-111

5 Functions — Alphabetical List
P

" TRADE" [735556.57] [17.12] [100.00] "
" TRADE" [735556.57] [17.12] [500.00] "

The columns in d contain the following:

* Tick type

* Numeric representation of the date and time
* Tick value

* Tick size

* Condition codes

Here, the first row shows that 100 "F US Equity” security shares sold for $17.12 today.
Close the Bloomberg connection.

close(c)

Retrieve Time-Series Tick Data Using a Date Range

Create the Bloomberg connection.

c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Retrieve the tick series for the "F US Equity” security for the last business day from
the beginning of the day to noon.

d

timeseries(c,"F US Equity”,{floor(now-4),floor(now-3.5)})
d =
"TRADE" [735552.67] [17.09] [200.00]

" TRADE" [735552.67] [17.09] [100.00]
" TRADE" [735552.67] [17.09] [100.00]

d contains the tick type in the first column, the numeric representation of the date and
time in the second column, the tick value in the third column, and the tick size in the

5-112

timeseries

fourth column. Here, the first row shows that 200 "F US Equity" security shares were
sold for $17.09 on the last business day.

Close the Bloomberg connection.

close(c)

Retrieve Time-Series Tick Data Using a Date Range with an Interval and a Specific Field
Create the Bloomberg connection.

c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Retrieve the trade tick series for the past 50 days for the IBM security aggregated into 5-
minute intervals.

d = timeseries(c,"1BM US Equity”,{floor(now)-50,Floor(now)},5, "Trade")
ans =

Columns 1 through 7

735487.40 187.20 187.60 187.02 187.08 207683.00 560.00

735487.40 187.03 187.13 186.65 186.78 46990.00 349.00

735487.40 186.78 186.78 186.40 186.47 51589.00 399.00
Collumn 8

38902968 .00
8779374.00
9626896 .00

The columns in d contain the following:

* Numeric representation of date and time
* Open price

* High price

* Low price

+ Closing price

* Volume of ticks

* Number of ticks

5-113

5 Functions — Alphabetical List
P

5-114

* Total tick value in the bar

The first row of data shows that on today’s date the open price is $187.20, the high price
is $187.60, the low price is $187.02, the closing price is $187.08, the volume of ticks is
207,683, the number of ticks is 560, and the total tick value in the bar is $38,902,968.
The next row shows tick data for 5 minutes later.

Close the Bloomberg connection.

close(c)

Retrieve Time-Series Tick Data Using a Date Range with Numerous Fields
Create the Bloomberg connection.

c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Return the Bid, Ask, and trade tick series for the security "F US Equity” for yesterday
with a time interval at noon, without specifying the aggregation parameter.

d = timeseries(c,"F US Equity",{floor(now-1)+.5,Floor(now-1)+.51}%}, ...
[1.{°Bid","Ask","Trade"})

d =
" TRADE" [735550.50] [16.71] [100.00]
" ASK* [735550.50] [16.71] [312.00]

"BID" [735550.50] [16.70] [177.00]

d contains the tick type in the first column, the numeric representation of the date and
time in the second column, the tick value in the third column, and the tick size in the
fourth column. Here, the first row shows that 100 *F US Equity" security shares sold
for $16.71 yesterday.

Close the Bloomberg connection.

close(c)
Retrieve Time-Series Tick Data Using a Date Range with Options and Values

Create the Bloomberg connection.

timeseries

c = blp;

Alternatively, you can connect to the Bloomberg Server API using blpsrv or Bloomberg
B-PIPE using bpipe.

Return the trade tick series for the security "F US Equity"” for yesterday with a time
interval at noon, without specifying the aggregation parameter. Additionally, return the
condition codes, exchange codes, and broker codes.

d = timeseries(c,"F US Equity”,{floor(now-1)+.5,Floor(now-1)+.51}, ...
[1. Trade",{"includeConditionCodes", ...
"includeExchangeCodes”, "includeBrokerCodes™"}, . . .
{"true*, “true”, "true“})

"TRADE" [735550.50] [16.71] [100.00] Tt D"
"TRADE" [735550.50] [16.70] [400.00] "1S" "B"
"TRADE" [735550.50] [16.70] [100.00] "1S" "B"

The columns in d contain the following:

* Tick type

* Numeric representation of the date and time
* Tick value

* Tick size

+ Exchange condition codes

* Exchange codes

Broker codes are available for Canadian, Finnish, Mexican, Philippine, and Swedish
equities only. If the equity is one of the former, then the broker buy code would be in the
seventh column and the broker sell code would be in the eighth column.

Here, the first row shows that 100 "F US Equity" security shares sold for $16.71
yesterday.

Close the Bloomberg connection.
close(c)

. “Retrieve Bloomberg Intraday Tick Data”

5-115

5 Functions — Alphabetical List
P

5-116

Input Arguments

¢ — Bloomberg connection
connection object

Bloomberg connection, specified as a connection object created using blp.

s — Security
string
Security, specified as a string for a single Bloomberg security.

Data Types: char

date — Date

scalar | string

Date, specified as a scalar or string to denote the specific date for the returned tick data.
Example: floor(now)

Data Types: double | char

interval — Time interval
scalar

Time interval, specified as a scalar to denote the number of minutes between ticks for the
returned tick data.

Data Types: double

field — Bloomberg field

string

Bloomberg field, specified as a string that defines the tick data to return. Valid values
are:

* IntradayBarRequest with time interval specified: *"TRADE", "BID", "ASK",
"BID_BEST", "ASK_BEST"

+ IntradayTickRequest with no time interval specified: *"TRADE", "BID", "ASK",
"BID_BEST", "ASK_BEST", "SETTLE"

Data Types: char

timeseries

options — Bloomberg API options
cell array

Bloomberg API options, specified as a cell array of strings. The valid strings
are "includeConditionCodes”, "includeExchangeCodes”, and
"includeBrokerCodes”.

Data Types: cell

values — Bloomberg API values
cell array

Bloomberg API values, specified as a cell array of strings. The valid values are true and
false.

Data Types: cell

startdate — Start date
scalar | string

Start date, specified as a scalar or string to denote the start date of the date range for the
returned tick data.

Example: floor(now-1)

Data Types: double | char

enddate — End date
scalar | string

End date, specified as a scalar or string to denote the end date of the date range for the
returned tick data.

Example: floor(now)

Data Types: double | char

Output Arguments

d — Bloomberg tick data
cell array | matrix

Bloomberg tick data, returned as a cell array for requests without a specified time
interval or a matrix for requests with a specified time interval.

5-117

5 Functions — Alphabetical List
P

5-118

More About

Tips

For better performance, add the Bloomberg file bl papi3. jar to the MATLAB
static Java class path by modifying the file SMATLAB/toolbox/local/
Javaclasspath.txt. For details about the static Java class path, see “The Static
Path”.

You cannot retrieve Bloomberg intraday tick data for a date more than 140 days ago.

The Bloomberg API Developer’s Guide states that "TRADE" corresponds to
LAST PRICE for IntradayTickRequest and IntradayBarRequest.

Bloomberg V3 intraday tick data supports additional name-value pairs. For details on
these pairs, see the Bloomberg API Developer’s Guide by typing WAP1 and clicking the
<GO> button on the Bloomberg terminal.

You can check data and field availability by using the Bloomberg Excel Add-In.

“Workflow for Bloomberg”

See Also

blp | close | getdata | history | realtime

datastream

datastream

Establish connections to Thomson Reuters Datastream API

Syntax

Connect = datastream("UserName®, "Password®, "Source®, "URL")

Arguments

"UserName* User name.

"Password” User password.

"Source” To connect to the Thomson Reuters Datastream API, enter
"Datastream” in this field.

"URL" Web URL.

Note: Thomson Reuters assigns the values for you to enter for each argument. Enter all
arguments as MATLAB strings.

Description
Connect = datastream("UserName®, "Password®, "Source”, "URL") makesa

connection to the Thomson Reuters Datastream API, which provides access to Thomson
Reuters Datastream software content.

Examples

Establish a connection to the Thomson Reuters Datastream API:

Connect = datastream("Userl®, "Passl®", "Datastream”, .
"http://dataworks.thomson.com/Dataworks/Enterprise/1.0%)

5-119

5 Functions — Alphabetical List
P

Note: If you get an error connecting, verify that your proxy settings are correct in
MATLAB by selecting Preferences > Web in the MATLAB Toolstrip.

See Also

datastream.close | datastream.fetch | datastream.get |
datastream. isconnection

5-120

datastream.close

datastream.close

Close connections to Thomson Reuters Datastream data servers

Syntax

close(Connect)

Arguments

Connect Thomson Reuters Datastream connection object created with the
datastream function.

Description

close(Connect) closes a connection to a Thomson Reuters Datastream data server.

See Also

datastream

5-121

5 Functions — Alphabetical List
P

5-122

fetch

Request data from Thomson Reuters Datastream data servers

Syntax

data

fetch(Connect, "Security”)

data = fetch(Connect, "Security", "Fields")

data = fetch(Connect, "Security®, "Fields®, "Date")
data = fetch(Connect, "Security", "Fields®, "FromDate-",
"ToDate")

data = fetch(Connect, "Security®, "Fields®, "FromDate~",
"ToDate", "“Period®)

data = fetch(Connect, "Security", "Fields", "FromDate",
"ToDate®, "Period®, "Currency®)

data = fetch(Connect, "Security", "Fields", "FromDate-",
"ToDate®, "Period®, "Currency”, "RegFlag")

Arguments

Connect Thomson Reuters Datastream connection
object created with the datastream
function.

"Security” MATLAB string containing the name of a

security, or cell array of strings containing
names of multiple securities. This data is
in a format recognizable by the Thomson
Reuters Datastream data server.

"Fields” (Optional) MATLAB string or cell array of
strings indicating the data fields for which
to retrieve data.

"Date” (Optional) MATLAB string indicating a
specific calendar date for which you request
data.

"FromDate" (Optional) Start date for historical data.

fetch

"ToDate" (Optional) End date for historical data.
If you specify a value for "ToDate",
"FromDate” cannot be an empty value.

Note: You can specify dates in any of
the formats supported by datestr and
datenum that show a year, month, and day.

"Period*” (Optional) Period within a date range.
Period values are:
+ "d":daily values
* "w": weekly values

* "m": monthly values

"Currency” (Optional) Currency in which fetch
returns the data.

"RegFlag” (Optional) Specifies how the fetch request
is processed by Datastream. The default
value is 0.

Note: You can enter the optional arguments "Fields”®, "FromDate”, "ToDate",
"Period”, and "Currency” as MATLAB strings or empty arrays ([]).

Description

data = fetch(Connect, "Security") returns the default time series for the
indicated security.

data = fetch(Connect, "Security”, "Fields") returns data for the specified
security and fields.

data = fetch(Connect, "Security®, "Fields®, "Date") returns data for the
specified security and fields on a particular date.

data = fetch(Connect, "Security", "Fields®, "FromDate~",
"ToDate") returns data for the specified security and fields for the indicated date range.

5-123

5 Functions — Alphabetical List
P

data = fetch(Connect, "Security", "Fields", "FromDate",
"ToDate", "Period") returns instrument data for the given range with the indicated
period.

data = fetch(Connect, "Security", "Fields", "FromDate-",
"ToDate", "Period", "Currency”) also specifies the currency in which to report the
data.

data = fetch(Connect, "Security®, "Fields®, "FromDate-",
"ToDate", "Period", "Currency”, "ReqFlag"”) also specifies a ReqgFlag that
determines how the request is processed by Datastream.

Note: The Thomson Reuters Datastream interface returns all data as strings. For
example, it returns Price data to the MATLAB workspace as a cell array of strings
within the structure. There is no way to determine the data type from the Datastream
interface.

Examples

Retrieving Time-Series Data

Return the trailing one-year price time series for the instrument ICl, with the default
value P for the "Fields” argument using the command:

data = fetch(Connect, "ICI")

Or the command:

data = fetch(Connect, "ICI", "P")

Retrieving Opening and Closing Prices

Return the closing and opening prices for the instruments 1CI on the date September 1,
2007.

data = fetch(Connect, "ICI", {"P", "PO"}, "09/01/2007%)

5-124

fetch

Retrieving Monthly Opening and Closing Prices for a Specified Date
Range

Return the monthly closing and opening prices for the securities 1CI and I1BM from
09/01/2005 to 09/01/2007:

data = fetch(Connect, {"ICI1", "IBM"}, {"P", "PO"},
"09/01/2005", "09/01/2007", "MT%)

Retrieving Static Data

Return the static fields NAME and ISIN:
data = fetch(Connect,{"IBM~REP"}, {"NAME","ISIN"});

You can also return SECD in this way.

Retrieving Russell 1000 Constituent List

Return the Russell 1000 Constituent List:

russell = fetch(Connect, {"LFRUSS1L~LIST~#UserName"});

where UserName is the user name for the Thomson Reuters Datastream connection.

See Also

get | close | datastream | isconnection

5-125

5 Functions — Alphabetical List
P

5-126

get

Retrieve properties of Thomson Reuters Datastream connection objects

Syntax

value = get(Connect, "PropertyName®)

value = get(Connect)

Arguments

Connect Thomson Reuters Datastream connection
object created with the datastream
function.

PropertyName (Optional) A MATLAB string or cell array
of strings containing property names. Valid
property names include:

+ user

+ datasource

+ endpoint

+ wsdl

+ sources

+ systeminfo

+ version
Description

value = get(Connect, "PropertyName") returns the value of the specified
properties for the Thomson Reuters Datastream connection object.

value = get(Connect) returns a MATLAB structure where each field name is the
name of a property of Connect. Each field contains the value of the property.

get

See Also

fetch | close | datastream | isconnection

5-127

5 Functions — Alphabetical List
P

5-128

isconnection

Determine if connections to Thomson Reuters Datastream data servers are valid

Syntax

X = isconnection(Connect)

Arguments

Connect Thomson Reuters Datastream connection
object created with the datastream
function.

Description

x = isconnection(Connect) returns X = 1 if the connection is a valid Thomson
Reuters Datastream connection, and X = 0 otherwise.

Examples

Establish a connection to the Thomson Reuters Datastream API:

c = datastream
Verify that c is a valid connection:

X = isconnection(c)
X =1
See Also

fetch | get | close | datastream

esig

esig

eSignal Desktop API connection

Syntax

E = esig(user)

Description

E = esig(user) creates an eSignal Desktop API connection given the user name user.
Only one eSignal connection can be open at a time.

Examples

In order to use the signal interface, you need to make the eSignal Desktop API visible to
MATLAB by using the command:

% Add NET assembly.
NET .addAssembly("D:\Work\esignal\DesktopAPI_TimeAndSales\. ..
DesktopAPIl_TimeAndSales\obj\Release\Interop.1ESignal .dll");

Note: Interop.1ESignal .dl1 does not ship with Datafeed Toolbox. This file is created

by Microsoft Visual Studio® using an unmanaged DLL, in a managed environment.
Interop.1ESignal .dll is a wrapper that Microsoft Visual Studio creates.

If you do not have Interop. IESignal .dl 1, contact our technical support staff.

Use the NET .addAssembly command to access Interop. 1ESignal .dll in MATLAB.
For example:

NET .addAssembly("D:\Work\esignal\DesktopAPI_TimeAndSales\DesktopAPI_TimeAndSales\obj\Release\Interop.I1ESignal .dll1%);

Create an eSignal connection handle:

% Enter "mylogin® as your user name.

5-129

5 Functions — Alphabetical List
P

E = esig("mylogin®)

See Also

close | history | getdata | timeseries

5-130

close

close

Close eSignal connection

Syntax

close(e)

Description

close(e) closes the eSignal connection object, e.

See Also

esig

5-131

5 Functions — Alphabetical List
P

getdata

Current eSignal data

Syntax

D = getdata(E,S)

Description
D = getdata(E,S) returns the eSignal basic quote data for the security S. Eis a

connection object created by esig.

Examples

Return the eSignal basic quote data for the security ABC:

D = getdata(E,"ABC")

See Also

esig | close | timeseries | history

5-132

getfundamentaldata

getfundamentaldata

Current eSignal fundamental data

Syntax

D = getfundamentaldata(E,S)

Description

D = getfundamentaldata(E,S) returns the eSignal fundamental data for the security
S.

Examples

Return the eSignal fundamental data for the security ABC:

D = getfundamentaldata(E, "ABC")

See Also

esig | close | history | getdata | timeseries

5-133

5 Functions — Alphabetical List
P

5-134

history

eSignal historical data

Syntax

D = history(E,S,F,{startdate,enddate}, per)

Description

D = history(E,S,F,{startdate,enddate}, per) returns the historical data for
the given inputs. Input arguments include the security list S, the fields F, the dates
startdate and enddate, and the periodicity per. Valid fields are Time, Open, High,
Low, Close, Volume, Ol, Flags, TickBid, TickAsk, and TickTrade. The input
argument per is optional and specifies the period of the data. Possible values for per are
"D" (daily, the default), "W" (weekly), and *"M" (monthly).

Examples

Return the closing price for the given dates for the given security using the default period
of the data:

D = history(E,"ABC", *CLOSE",{"8/01/2009" , *8/10/2009"})

Return the monthly closing and high prices for the given dates for the given security:

D = history(E, "ABC*,{"close", “high"},{"6/01/2009" , "11/10/2009"}, *M*)

Return all fields for the given dates for the given security using the default period of
the data. The fields are returned in the following order: Time, Open, High, Low, Close,
Volume, Ol, Flags, TickBid, TickAsk, TickTrade.

D = history(E, "ABC", [].{"8/01/2009" , *8/10/2009"})

See Also

esig | close | timeseries | getdata

timeseries

timeseries

eSignal intraday tick data

Syntax

D = timeseries(E,S,F,{startdate,enddate}, per)
D timeseries(E,S,F,startdate)

Description

D = timeseries(E,S,F,{startdate,enddate},per) returns the intraday data for
the given inputs. Inputs include the security list S, the fields F, the dates startdate and
enddate, and the periodicity per. Valid fields for F are Time, Open, High, Low, Close,
Volume, Ol, Flags, TickBid, TickAsk, and TickTrade. The periodicity per is optional
and specifies the period of the data. For example, if you enter the value "1* for per, the
returned data will be aggregated into 1-minute bars. Enter "30" for 30-minute bars and
"60" for 60-minute bars.

D = timeseries(E,S,F,startdate) returns raw intraday tick data for the date
range starting at startdate and ending with current day. Note that the date range can
only extend back for a period of 10 days from the current day.

Examples

Return the monthly closing and high prices for the given dates for the given security in
10-minute bars.

D = timeseries(E,"ABC US Equity”,{"close”, "high"}, ...
{"1/01/2010","4/10/2010"},"10%)

Return all fields for the given dates for the given security in 10 minute bars. Fields are
returned in the following order: Time, Open, High, Low, Close, Volume, Ol, Flags,
TickBid, TickAsk, and TickTrade.

D = timeseries(E,"ABC US Equity",[],{"8/01/2009","8/10/2009"},"10")

5-135

5 Functions — Alphabetical List
P

More About

Tips

For intraday tick requests made with a period argument, per, the following fields are
valid: Time, Open, High, Low, Close, Volume, Ol, Flags, TickBid, TickAsk, and
TickTrade.

For raw intraday tick requests, the following fields are valid: TickType, Time, Price,
Size, Exchange, and Flags.

See Also

esig | close | history | getdata

5-136

iqf

IQFEED Desktop API connection

Syntax

Q= i1gf(username, password)
Q= igf(username, password, portname)

Description

Q= igf(username, password) starts IQFEED or makes a connection to an existing
IQFEED session.

Q= igf(username, password, portname) starts IQFEED or makes a connection to
an existing IQFEED session.

Note: Only one IQFEED connection can be open at a time.

Arguments

username The user name for the IQFEED account.
password The password for the IQFEED account.
portname The IQFEED port identifier (default = *Admin®).
Examples

Create an IQFEED connection handle.
Q = 1gf(Tusername*, "password®)

Alternatively, you can create a connection and specify the portname argument.

Q = iqgf(Tusername”, "password®, "Admin®)

5-137

5 Functions — Alphabetical List

See Also

close | marketdepth | realtime | history | news | timeseries

5-138

close

close

Close IQFEED ports

Syntax

close(Q)

Description

close(Q) closes all IQFEED ports currently open for a given IQFEED connection

handle, Q.

Arguments

‘Q |IQFEED connection handle created using 1qf.

Examples
Close all ports for an IQFEED connection handle.

close(Q)

See Also
igf

5-139

5 Functions — Alphabetical List
P

5-140

history

IQFEED asynchronous historical end-of-period data

Syntax

history(c,s, interval)
history(c,s, interval,period)
history(c,s, interval,period, listener,eventhandler)

history(c,s,{startdate,enddate})
history(c,s,{startdate,enddate},[],listener,eventhandler)

Description

history(c,s, interval) returns asynchronous historical end-of-period data using the
connection object C, a single security S, and a specified interval interval.

history(c,s, interval ,period) returns asynchronous historical end-of-period data
for a single security with a specified interval and period period.

history(c,s, interval,period, listener,eventhandler) returns asynchronous
historical end-of-period data for a single security with a specified interval, period, socket
listener listener, and event handler eventhandler.

history(c,s,{startdate,enddate}) returns asynchronous historical end-of-period
data for a single security with a date range.

history(c,s,{startdate,enddate},[], listener,eventhandler) returns
asynchronous historical end-of-period data for a single security with a date range, a
specified socket listener 1istener, and event handler eventhandler.

Examples

Retrieve Daily Data

Create the IQFEED connection with user name username and password pwd.

history

c = 1gfCTusername”, "pwd");

Retrieve the Google security data for the last five days.
history(c, "GO0OG",5)

history returns the data in the MATLAB cell array 1QFeedHistoryData.

Display the returned data in 1QFeedHistoryData.

I1QFeedHistoryData

IQFeedHistoryData =

"2013-11-21 11:08:58"
"2013-11-20 11:08:58"
"2013-11-19 11:08:58"
"2013-11-18 11:08:58"
"2013-11-15 11:08:58"

"1038.
"1033.
"1034.
"1048.
"1038.

"1026.
"1020.
"1023.
"1029.
"1030.

"1027.
"1029.
"1031.
"1035.
"1034.

"1034.
"1022.
"1025.
"1031.
"1033.

"1092497*
"965535"

"1131619"
"1760249"
"1277772"

[ejoloNeNo)

Each row of data represents one day. The columns in 1QFeedHistoryData contain the

following:

* Date and time
* High price

* Low price

* Open price

+ Closing price

* Volume

* Open interest

Close the IQFEED connection.

close(c)

Retrieve Weekly Data

Create the IQFEED connection with user name username and password pwd.

c = igf(Cusername”, "pwd");

Retrieve the Google security data for the last five weeks.

history(c, "GO0G",5, "Weekly™)

5-141

5 Functions — Alphabetical List
P

history returns the data in the MATLAB cell array 1QFeedHistoryData.

Display the returned data in 1QFeedHistoryData.

I1QFeedHistoryData

IQFeedHistoryData =
"2013-11-21 11:07:02" "1048.74" "1020.36" "1035.75" "1034.07" "4949900" 0
"2013-11-15 11:07:02" "1039.75" "1005.00" "1009.51" "1033.56" "6361983" 0
"2013-11-08 11:07:02" "1032.37" "1007.64" "1031.50" "1016.03" "6209876" "0*
"2013-11-01 11:07:02" "1041.52* "1012.98" "1015.20" "1027.04" "7025769" "0*
"2013-10-25 11:07:02" "1040.57" "995.79" "1011.46" "1015.20" "12636223" 0

Each row of data represents the last day of a week. The first row contains data for the
last business day in the current week. The columns in 1QFeedHistoryData contain the
following:

* Date and time
* High price

* Low price

* Open price

* Closing price

* Volume

* Open interest

Close the IQFEED connection.

close(c)

Retrieve Monthly Data with Event Handlers

Create the IQFEED connection with user name username and password pwd.
c = igf(Cusername”, "pwd");

Retrieve the Google security data for the last five months. Use the event handler
functions ighistoryfeedlistener and ighistoryfeedeventhandler to listen for
the Google security and parse the resulting data.

history(c, "GO0G",5, "Monthly",@ighistoryfeedlistener,. ..
@ighistoryfeedeventhandler)

history returns the data in the MATLAB cell array 1QFeedHistoryData.

5-142

history

Display the returned data in 1QFeedHistoryData.

IQFeedHistoryData

IQFeedHistoryData =
"2013-11-21 11:13:07" "1048.74" "1005.00" "1031.79" "1034.07" "18805697"
"2013-10-31 11:13:07" "1041.52* "842.98" "880.25" "1030.58" "55288774"
"2013-09-30 11:13:07" "905.99" "853.95" "854.36" "875.91" "33147210"
"2013-08-30 11:13:07" "909.71" "845.56" "895.00" "846.90" "33509358*
"2013-07-31 11:13:07" "928.00" "875.61" "886.45" "887.75" "51277966"°

[ejeoloNeNa)
« v oe o ow

Each row of data represents the last day of a month. The first row contains data for the
last business day in the current month. The columns in 1QFeedHistoryData contain

the following:

* Date and time
* High price

* Low price

* Open price

* Closing price

* Volume

* Open interest
Close the IQFEED connection.

close(c)

Retrieve Data for a Date Range

Create the IQFEED connection with user name username and password pwd.

c = 1gfCCusername”, "pwd");

Retrieve IBM security data for the last five days.

history(c, " IBM" ,{floor(now-5) ,floor(now)})

history returns the data in the MATLAB cell array 1QFeedHistoryData.
Display the returned data in 1QFeedHistoryData.

IQFeedHistoryData

IQFeedHistoryData =

5-143

5 Functions — Alphabetical List
P

5-144

"2013-11-21 10:59:51* ®185.7500*" ©183.4110"° "185.5400" "184.1300" "4459451* "0*
"2013-11-20 10:59:51* ®186.2400"° “184.6450" "185.2200" ®185.1900" "3646117* "0*
"2013-11-19 10:59:51* ®186.2000" ®184.1500*° "184.6300"° "185.2500" "4577037" "0*
"2013-11-18 10:59:51* ®184.9900*" ©183.2700"° ®183.5200" "184.4700" *5344864* "0*

Each row of data represents one day. Since this example is run on a Friday, the return
data has only four days. The columns in 1QFeedHistoryData contain the following:

* Date and time
+ High price

* Low price

+ Open price

+ Closing price

* Volume

* Open interest

Close the IQFEED connection.

close(c)

Retrieve Data for a Date Range with Event Handlers

Create the IQFEED connection with user name username and password pwd.
c = iqgfCCusername”, "pwd");

Retrieve the Google security data for the last five days. Use the event handler functions
ighistoryfeedlistener and ighistoryfeedeventhandler to listen for the Google
security and parse the resulting data. The period [] specifies the default period for daily
data.

history(c, "GO0G" ,{floor(now-5) ,Floor(now)},[1,---
@ighistoryfeedlistener,@ighistoryfeedeventhandler)

history returns the data in the MATLAB cell array 1QFeedHistoryData.

Display the returned data in 1QFeedHistoryData.

IQFeedHistoryData

IQFeedHistoryData =
"2013-11-21 11:12:15" "1038.31" "1026.00" "1027.00" "1034.07" "1092497* "0*
"2013-11-20 11:12:15" "1033.36" "1020.36" "1029.95" "1022.31" "965535" "0*
"2013-11-19 11:12:15" "1034.75" "1023.05" "1031.72* "1025.20" "1131619* "0*
"2013-11-18 11:12:15" "1048.74" "1029.24" "1035.75" "1031.55"° "1760249* "0*

history

Each row of data represents one day. Since this example is run on a Friday, the return
data has only four days. The columns in 1QFeedHistoryData contain the following:

* Date and time
* High price

* Low price

+ Open price

+ Closing price

* Volume

* Open interest

Close the IQFEED connection.

close(c)

Input Arguments

¢ — IQFEED connection
connection object

IQFEED connection, specified as a connection object created using iqf.

s — Security
string

Security, specified as a string for a single security.
Example: " IBM*®

Data Types: char

interval — Time interval
scalar

Time interval, specified as a scalar to denote the number of days of data to return.

Data Types: double

period — Period
"Daily” (default) | "Weekly®™ | "Monthly*"

5-145

5 Functions — Alphabetical List
P

Period, specified as one of the above enumerated strings to denote daily, weekly, or
monthly return data. When this argument is specified along with interval, history
returns the number of daily, weekly, or monthly data where the number of output rows
corresponds to the interval. When this argument is omitted by specifying [], history
returns daily data.

Data Types: char

listener — Listener event handler
function

Listener event handler, specified as a function to listen for the IQFEED data. You can
modify the existing listener function or define your own. You can find the code for the
existing listener function in the history.m file.

Data Types: function_handle

eventhandler — Event handler
function

Event handler, specified as a function to process the IQFEED data. The existing event
handler displays the IQFEED data in the MATLAB Command Window. You can modify
the existing event handler function or define your own. You can find the code for the
existing event handler function in the history .m file.

Data Types: function_handle

startdate — Start date
scalar | string

Start date, specified as a scalar or string to denote the start date of the date range for the
returned data.
Example: floor(now-1)

Data Types: double | char

enddate — End date
scalar | string

End date, specified as a scalar or string to denote the end date of the date range for the
returned data.

Example: floor(now)

5-146

history

Data Types: double | char

More About
Tips
* When you make multiple requests with multiple messages, this error might occur:

Warning: Error occurred while executing delegate callback: Message: The
TAsyncResult object was not returned from the corresponding asynchronous method
on this class.

To fix this, restart MATLAB.

. “Writing and Running Custom Event Handler Functions” on page 1-22

See Also

close | igf | marketdepth | realtime | timeseries

5-147

5 Functions — Alphabetical List
P

5-148

marketdepth

IQFEED asynchronous level 2 data

Syntax

marketdepth(Q, S)
marketdepth(Q, S, elistener, ecallback)

Description

marketdepth(Q, S) returns asynchronous level 2 data using the default socket listener
and event handler.

marketdepth(Q, S, elistener, ecallback) returns asynchronous level 2 data
using an explicitly defined socket listener and event handler.

Arguments

Q IQFEED connection handle created using iqf.

S S is specified as a string for a single security or a cell array of
strings for multiple securities.

elistener Function handle that specifies the function used to listen for
data on the level 2 port.

ecal lback Function handle that specifies the function that processes
data event.

Examples

Return level 2 data using the default socket listener and event handler and display the
results in the MATLAB workspace in the variable 1QFeedLevel TwoData.

marketdepth(q, "ABC")

marketdepth

openvar (" 1QFeedLevelTwoData")

Initiate a watch on the security ABC for level 2 data using the function handles
igfeedlistener and iqfeedeventhandler. Display the results in the MATLAB
workspace in the variable 1QFeedLevelTwoData.

marketdepth(q, "ABC",@igfeedmarketdepthlistener,@iqfeedmarketdeptheventhandler)
openvar (" IQFeedLevelTwoData")

More About

. “Writing and Running Custom Event Handler Functions” on page 1-22

See Also

close | history | iqf | realtime | timeseries

5-149

5 Functions — Alphabetical List
P

5-150

news

IQFEED asynchronous news data

Syntax

news(Q, S)
news(Q, S, elistener, ecallback)

Description

news(Q, S) returns asynchronous news data using the default socket listener and event
handler.

news(Q, S, elistener, ecallback) returns asynchronous news data using an
explicitly defined socket listener and event handler.

The syntax news(Q, true) turns on news updates for the list of currently subscribed
level 1 securities and news(Q, False) turns off news updates for the list of currently
subscribed level 1 securities.

Arguments

Q IQFEED connection handle created using iqf.

S S is specified as a string for a single security or a cell array of
strings for multiple securities.

elistener Function handle that specifies the function used to listen for
data on the news lookup port.

ecallback Function handle that specifies the function that processes
data events.

Examples

Return news data using the defaults for socket listener and event handler and display
the results in the MATLAB workspace in the variable IQFeedNewsData.

news

news(q, "ABC")
openvar (" 1QFeedNewsData")

Return news data for the security ABC using the function handles igfeedlistener and
igfeedeventhandler. Display the results in the MATLAB workspace in the variable
1QFeedNewsData.

news(q, "ABC" ,@iqfeednewslistener,@iqfeednewseventhandler)
openvar (" 1QFeedNewsData")

More About

. “Writing and Running Custom Event Handler Functions” on page 1-22

See Also

close | history | igf | marketdepth | realtime | timeseries

5-151

5 Functions — Alphabetical List
P

5-152

realtime

IQFEED asynchronous level 1 data

Syntax

realtime(Q, S)
realtime(Q, S, F)

realtime(Q, S, elistener, ecallback)

Description

realtime(Q, S) returns asynchronous level 1 data using the current update field list,
default socket listener, and event handler.

realtime(Q, S, F) returns asynchronous level 1 data for a specified field list using
the default socket listener and event handler.

realtime(Q, S, elistener, ecallback) returns asynchronous level 1 data using
an explicitly defined socket listener and event handler.

Arguments

Q IQFEED connection handle created using iqf.

S S is specified as a string for a single security or a cell array of
strings for multiple securities.

F F is the field list. If no field list is specified or it is input as
empty, the default IQFEED level 1 field will be updated with
each tick.

elistener Function handle that specifies the function used to listen for
data on the IQFEED Lookup port.

ecal lback Function handle that specifies the function that processes

data event.

realtime

Examples

Set the data precision. Setting the connection handle property Protocol determines the
date format for the return data based on the IQFEED version specified by the protocol.

q-Protocol = 5.1
q =
igf with properties:

User: “username-
Password: "password®

Port: {[1x1 System.Net.Sockets.Socket]}
PortName: {"Admin-®}
Protocol: 5.1000

Return level 1 data for security ABC using the default socket listener and event handler.
Display the results in the MATLAB workspace in the variable 1QFeedLevelOneData.

realtime(q, "ABC")
openvar (" IQFeedLevelOneData™)

Return level 1 data for security ABC using a field list and the defaults for the socket
listener and event handler. Display the results in the MATLAB workspace in the
variable 1QFeedLevelOneData.

realtime(q,"ABC", ...
{"Symbol ", "Exchange ID","Last","Change”, "Incremental Volume®})
openvar (" 1QFeedLevelOneData*®)

Return level 1 data for security ABC using the function handles iqfeedlistener and
igfeedeventhandler. Display the results in the MATLAB workspace in the variable
1QFeedLevelOneData.

realtime(q,"ABC", ...
{"Symbol ", "Exchange ID","Last","Change”, "Incremental Volume"}, ...
@igfeedlistener,@igfeedeventhandler)
openvar (" 1QFeedLevelOneData*®)

More About

. “Writing and Running Custom Event Handler Functions” on page 1-22

5-153

5 Functions — Alphabetical List

See Also

close | history | iqf | marketdepth | timeseries

5-154

timeseries

timeseries

IQFEED asynchronous historical end-of-period data

Syntax

timeseries(Q, S, daterange)
timeseries(Q, S, daterange, per, elistener, ecallback)

Description

timeseries(Q, S, daterange) returns intraday ticks for the given date range using
the default socket listener and event handler.

timeseries(Q, S, daterange, per, elistener, ecallback) returns intraday
ticks for the given date range and defined period using an explicitly defined socket
listener and event handler.

Data requests are returned asynchronously. For requests that return a large number of
ticks, there may be a significant lag between the request and when the data is returned
to the MATLAB workspace.

Arguments

Q IQFEED connection handle created using iqf.

S S is a single security input specified as a string.

daterange Ether a scalar value that specifies how many periods of data
to return or a date range of the form{startdate,enddate}.
startdate and enddate can be input as MATLAB date
numbers or strings.

per Specifies, in seconds, the bar interval of the ticks used to
aggregate ticks into intraday bars.

elistener Function handle that specifies the function used to listen for
data on the IQFEED Lookup port.

5-155

5 Functions — Alphabetical List
P

ecal lback Function handle that specifies the function that processes
data event.

Examples

Return intraday ticks for a given date range and use the default socket listener and
event handler and then display the results in the MATLAB workspace in the variable
IQFeedTimeseriesData:

timeseries(q, "ABC" ,{floor(now) ,now}
openvar (" 1QFeedTimeseriesData")

For data that is not aggregated, the fields returned are Time Stamp, Last, Last Size,
Total Volume, Bid, Ask, and TickID.

Return the intraday ticks for a date range using the 24-hour military format, per of 60
seconds, and the default socket listener and event handler. Display the results in the
MATLAB workspace in the variable 1QFeedTimeseriesData.

timeseries(q, "ABC",{"02/12/2012 09:30:00","02/12/2012 16:00:00"},60)
openvar (" 1QFeedTimeseriesData”)

For aggregated data, the fields returned are Request ID, Time, Stamp, High, Low, Open,
Close, Total Volume, and Period Volume.
Return the intraday ticks for a date range using the 12-hour time format.

timeseries(q, "ABC",{"02/12/2012 09:30:00 AM*,"02/12/2012 04:00:00 PM"},60)
openvar (" IQFeedTimeseriesData”)

Return the intraday ticks for a date range on the security ABC using the function
handles igfeedlistener and igfeedeventhandler. Display the results in the
MATLAB workspace in the variable 1QFeedTimeseriesData.

timeseries(q, "ABC",{floor(now),now}, []1,@iqgtimeseriesfeedlistener,@iqtimeseriesfeedeventhandler)
openvar (" 1QFeedTimeseriesData*)

More About
Tips

* When you make multiple requests with multiple messages, this error might
occur: Warning: Error occurred while executing delegate callback: Message: The

5-156

timeseries

TAsyncResult object was not returned from the corresponding asynchronous method
on this class. To fix this, restart MATLAB.

. “Writing and Running Custom Event Handler Functions” on page 1-22

See Also

close | history | igf | marketdepth | realtime

5-157

5 Functions — Alphabetical List
P

5-158

factset

Establish connection to FactSet data

Syntax
Connect = factset("UserName®, “SerialNumber®, "Password®, "ID")
Arguments
UserName User login name.
SerialNumber User serial number.
Password User password.
ID FactSet customer identification number.
Note: FactSet assigns values to all input arguments.
Description
Connect = factset("UserName®, "SerialNumber®, "Password", "ID")

connects to the FactSet interface.

Examples

Establish a connection to FactSet data:

Connect = factset(“username®, "1234", “password”,
Connect =
user: "username”
serial: "1234*
password: "password”
cid: "fsid"

“fsid")

factset

See Also

close | get | fetch | isconnection

5-159

5 Functions — Alphabetical List
P

close

Close connection to FactSet

Syntax

close(Connect)

Arguments

‘Connect ‘FactSet connection object created with factset.

Description

close(Connect) closes the connection to FactSet data

See Also

factset

5-160

fetch

fetch

Request data from FactSet

Syntax
data = fetch(Connect)
data = fetch(Connect, "Library®)

data

fetch(Connect, "Security®, "Fields~)

data = fetch(Connect, "Security", "Fields", "FromDate",

"ToDate")

data = fetch(Connect, "Security", "FromDate-",

"ToDate", "Period")

Arguments

Connect FactSet connection object created with the factset function.

Library FactSet formula library.

Security A MATLAB string or cell array of strings containing the names
of securities in a format recognizable by the FactSet server.

Fields A MATLAB string or cell array of strings indicating the data
fields for which to retrieve data.

Date Date string or serial date number indicating date for the
requested data. If you enter today's date, fetch returns
yesterday's data.

FromDate Beginning date for date range.

Note: You can specify dates in any of the formats supported by
datestr and datenum that display a year, month, and day.

ToDate End date for date range.

Period Period within date range. Period values are:

* "d":daily values
* "b":business day daily values

5-161

5 Functions — Alphabetical List
P

5-162

* "m": monthly values

* "mb": beginning monthly values
* "me": ending monthly values

* "Q": quarterly values

+ "gb": beginning quarterly values
* "ge": ending quarterly values

* "y":annual values

* "yb": beginning annual values

* "ye": ending annual values

Description
data = fetch(Connect) returns the names of all available formula libraries.

data = fetch(Connect, "Library") returns the valid field names for a given
formula library.

data = fetch(Connect, "Security”, "Fields") returns data for the specified
security and fields.

data = fetch(Connect, "Security®, "Fields®, "Date") returns security data
for the specified fields on the requested date.

data = fetch(Connect, "Security", "Fields®, "FromDate~",
"ToDate") returns security data for the specified fields for the date range FromDate to
ToDate.

data = fetch(Connect, "Security®, "FromDate",
"ToDate", "Period") returns security data for the date range FromDate to ToDate
with the specified period.

Examples

Retrieving Names of Available Formula Libraries

Obtain the names of available formula libraries:

fetch

D = fetch(Connect)

Retrieving Valid Field Names of a Specified Library

Obtain valid field names of the FactSetSecurityCalcs library:

D = fetch(Connect, "fs®)

Retrieving the Closing Price of a Specified Security

Obtain the closing price of the security 1BM:

D = fetch(Connect, "IBM", "price")

Retrieving the Closing Price of a Specified Security Using Default Date
Period

Obtain the closing price for 1BM using the default period of the data:

D = fetch(C, "I1BM", "price", "09/01/07, "09/10/07%)

Retrieving the Monthly Closing Prices of a Specified Security for a Given
Date Range

Obtain the monthly closing prices for I1BM from 09/01/05 to 09/10/07:

D = fetch(C, "I1BM", "price", "09/01/05", "09/10/07%, "m%")

See Also

close | isconnection | factset

5-163

5 Functions — Alphabetical List
P

get

Retrieve properties of FactSet connection object

Syntax

value get(Connect, "PropertyName®)
value = get(Connect)

Arguments

Connect FactSet connection object created with the factset
function.

PropertyName (Optional) A MATLAB string or cell array of strings
containing property names. Property names are:
* user
+ serial
* password
+ cid

Description

value = get(Connect, "PropertyName") returns the value of the specified
properties for the FactSet connection object.

value = get(Connect) returns a MATLAB structure where each field name is the
name of a property of Connect, and each field contains the value of that property.

Examples

Establish a connection to FactSet data:

Connect = factset("Fast_User®,"1234","Fast_Pass”, "userid”)

5-164

get

Retrieve the connection property value:

h = get(Connect)
h=
user: "Fast_User-”
serial: "1234"
password: "Fast_Pass”
cid: "userid”

Retrieve the value of the connection's user property:

get(Connect, "user"®)
ans =
Fast_User

See Also

close | isconnection | fetch | factset

5-165

5 Functions — Alphabetical List
P

isconnection

Determine if connections to FactSet are valid

Syntax

X = isconnection(Connect)

Arguments

‘Connect FactSet connection object created with factset.

Description

x = isconnection(Connect) returns X = 1 if the connection to the FactSet is valid,
and X = O otherwise.

Examples

Establish a connection, c, to FactSet data:

c = factset

Verify that c is a valid connection:

x = isconnection(c);
X =

1
See Also

close | get | fetch | factset

5-166

fds

fds

Create FactSet Data Server connection

Syntax

c = fds(UserName,Password)
c = fds(UserName,Password,Finfo)
Description

c = fds(UserName,Password) connects to the FactSet Data Server or local
workstation using the field information file, rt_fields.xml, found on the MATLAB
path. The file rt_fields.xml can be obtained from FactSet.

c = fds(UserName,Password,Finfo) connects to the FactSet Data Server or local
workstation using the specified field information file (Finfo).

Examples

Create FDS Connection

Connect to the FactSet Data Server.

c = fds("USER", "1234567);

This creates the connection object C using the field information file, rt_fields.xml,
found on the MATLAB path. You can obtain the file rt_fields.xml from FactSet.

Create FDS Connection Using Finfo
Connect to the FactSet Data Server using the optional Finfo input argument.

c = fds("USER", "123456", . ..
“C:\Program Files (x86)\FactSet\FactSetDataFeed\fdsrt-2\etc\rt_fields.xml");

5-167

5 Functions — Alphabetical List
P

This creates the connection object c.

Input Arguments

UserName — User login name
string

User login name to FactSet Data Server, specified as a string.

Data Types: char

Password — User password
string

User password to FactSet Data Server, specified as a string.
Data Types: char

Finfo — Field information
string

Field information, specified as a string.

Example: "C:\Program Files (x86)\FactSet\FactSetDataFeed\fdsrt-2\etc
\rt_fields.xml"

Data Types: char

Output Arguments

c — FactSet Data Server connection
connection object

FactSet Data Server connection, returned as a connection object.

See Also

close | realtime | stop

5-168

realtime

realtime

Obtain real-time data from FactSet Data Server

Syntax

T = realtime(c,Srv,Sec,Cb)
T = realtime(c,Srv,Sec)
Description

T = realtime(c,Srv,Sec,Cb) asynchronously requests real-time or streaming data
from the FactSet Data Server or local workstation.

T = realtime(c,Srv,Sec) asynchronously requests real-time or streaming data
from the FactSet Data Server or local workstation. When Cb is not specified, the default
message event handler fFactsetMessageEventHandler is used.

Examples

Request FactSet Data Server Real-Time Data with User-Defined Event Handler

To request real-time or streaming data for the symbol *ABDC-USA" from the service
"FDS1", a user-defined event handler (nyMessageEventHandler) is used to process
message events using this syntax.

t = realtime(c, "FDS1", "ABCD-USA",@(varargin)myMessageEventHandler(varargin))
Request FactSet Data Server Real-Time Data Using Default Event Handler

To request real-time or streaming data for the symbol *ABDC-USA*" from the service
"FDS1*, using this syntax.

t = realtime(c, "FDS1","ABCD-USA")

5-169

5 Functions — Alphabetical List

The default event handler is used which returns a structure X to the base MATLAB
workspace containing the latest data for the symbol "ABCD-USA". X is updated as new
message events are received.

Input Arguments

c — FactSet Data Server connection
connection object

FactSet Data Server connection, specified as a connection object created using fds.

Srv — Data source or supplier

string

Data source or supplier, specified as a string.
Example: "FDS1*

Data Types: char

Sec — Security symbol

string

Security symbol, specified as a string.
Example: "ABCD-USA*

Data Types: char

Cb — Event handler
function handle

Event handler, specified as a function handle requests real-time or streaming data from
the service FactSet Data Server.

If Cb is not specified, the default message event handler
factsetMessageEventHandler is used.
Example: @(varargin)myMessageEventHandler(varargin)

Data Types: function_handle

5-170

realtime

Output Arguments

T — Real-time data tag
nonnegative integer

Real-time data tag, returned as a nonnegative integer from FactSet Data Server.

More About

. “Writing and Running Custom Event Handler Functions” on page 1-22

See Also

close | fds | stop

5-171

5 Functions — Alphabetical List
P

5-172

stop

Cancel real-time request

Syntax

stop(c,T)

Description

stop(c,T) cancels a real-time request. This function cleans up resources associated
with real-time requests that are no longer needed.

Examples

Cancel FactSet Data Server Real-Time Request

Terminate a FactSet Data Server real-time request.

T = realtime(c, "FDS1", "GO0OG-USA")
stop(c,T)

Input Arguments

c — FactSet Data Server connection
connection object

FactSet Data Server connection, specified as a connection object created using fds.

T — Real-time request tag
nonnegative integer

Real-time request tag, specified using realtime.

Data Types: double

stop

See Also

close | fds | realtime

5-173

5 Functions — Alphabetical List
P

close

Disconnect from FactSet Data Server

Syntax

close(c)

Description

close(c) disconnects from the FactSet Data Server or local workstation given the
connection object, F.

Examples

Close FactSet Data Server Connection

Close the FactSet Data Server connection.

T = realtime(c, "FDS1", "GOOG-USA™)
close(c)

Input Arguments

c — FactSet Data Server connection
connection object

FactSet Data Server connection, specified as a connection object created using fds.

See Also

fds | realtime | stop

5-174

fred

fred

Connect to FRED data servers

Syntax

Connect = fred(URL)

Connect = fred

Arguments

‘URL Create a connection using a specified URL.
Description

Connect = fred(URL) establishes a connection to a FRED data server.

Connect = fred verifies that the URL http://research._stlouisfed.org/fred2/
1s accessible and creates a connection.

Examples

Connect to the FRED data server at the URL http://research.stlouisfed.org/
fred2/:

c = fred("http://research_stlouisfed.org/fred2/")

See Also

close | isconnection | fetch | get

5-175

http://research.stlouisfed.org/fred2/
http://research.stlouisfed.org/fred2/
http://research.stlouisfed.org/fred2/

5 Functions — Alphabetical List
P

5-176

close

Close connections to FRED data servers

Syntax

close(Connect)

Arguments

‘Connect FRED connection object created with fred.

Description

close(Connect) closes the connection to the FRED data server.

Examples
Make a connection € to a FRED data server:
c = fred("http://research.stlouisfed.org/fred2/")

Close this connection:

close(c)

See Also
fred

fetch

fetch

Request data from FRED data servers

Syntax

data = fetch(Connect, "Series")

data = fetch(Connect, "Series®, "D1%)

data = fetch(Connect, "Series”, "D1", "D2%)

Arguments

Connect FRED connection object created with the fred function.

"Series” MATLAB string containing the name of a series in a format
recognizable by the FRED server.

"D1* MATLAB string or date number indicating the date from which
to retrieve data.

"D2* MATLAB string or date number indicating the date range from
which to retrieve data.

Description

For a given series, fetch returns historical data using the connection to the FRED data
server.

data = fetch(Connect, "Series") returns data for Series, using the connection
object Connect.

data = fetch(Connect, "Series”, "D1") returns data for Series, using the
connection object Connect, for the date D1.

data = fetch(Connect, "Series®, "D1", "D2") returns all data for Series,
using the connection object Connect, for the date range "D1" to "D2°".

5-177

5 Functions — Alphabetical List
P

5-178

Note: You can specify dates in any of the formats supported by datestr and datenum
that show a year, month, and day.

Examples

Fetch all available daily U.S. dollar to European foreign exchange rates.

d
d

fetch(F, "DEXUSEU")

Title:

SeriesliD:

Source:

Release:
SeasonalAdjustment:
Frequency:

Units:

DateRange:
LastUpdated:

Notes:

Data:

"U.S. / Euro Foreign Exchange Rate*
“DEXUSEU*
"Board of Governors of the Federal Reserve System”
"H.10 Foreign Exchange Rates®
“Not Applicable”
“Daily”
"U.S. Dollars to One Euro-®
"1999-01-04 to 2006-06-19°
"2006-06-20 9:39 AM CT*
“Noon buying rates in New York City for
cable transfers payable in foreign currencies.”
[1877x2 double]

Data is an N-by-2 element double array that contains dates in the first column and the
series values in second column.

Fetch data for 01/01/2007 through 06/01/2007.

d
d

Title:

SeriesliD:

Source:

Release:
SeasonalAdjustment:
Frequency:

Units:

DateRange:
LastUpdated:

Notes:

Data:

fetch(f, "DEXUSEU",

"01/01/2007", "06/01/2007%)

® U.S. / Euro Foreign Exchange Rate*

" DEXUSEU"

Board of Governors of the Federal Reserve System®
H.10 Foreign Exchange Rates*

Not Applicable*

Daily*

U.S. Dollars to One Euro*

" 1999-01-04 to 2006-06-19*

" 2006-06-20 9:39 AM CT"

Noon buying rates in New York City for

cable transfers payable in foreign currencies.”
[105%x2 double]

Data is an N-by-2 element double array that contains dates in the first column and the
series values in second column.

See Also

close | isconnection | get

get

get

Retrieve properties of FRED connection objects

Syntax

value = get(Connect, "PropertyName®)
value = get(Connect)

Arguments

Connect FRED connection object created with fred.

"PropertyName* A MATLAB string or cell array of strings containing property
names. Property names are:

s “url”
. 'ip'
*+ "port-

Description

value = get(Connect, "PropertyName®) returns a MATLAB structure containing
the value of the specified properties for the FRED connection object.

value = get(Connect) returns the value for all properties.

Examples

Establish a connection, c, to a FRED data server:

c = fred("http://research.stlouisfed.org/fred2/")

Retrieve the port and IP address for the connection:

5-179

5 Functions — Alphabetical List
P

5-180

p = get(c, {"port™, "ip“})
p =

port: 8194

ip: 111.222.33.444
See Also

close | isconnection | fetch

isconnection

isconnection

Determine if connections to FRED data servers are valid

Syntax

X = isconnection(Connect)

Arguments

‘Connect ‘FRED connection object created with fred.

Description

X = isconnection(Connect) returns X = 1 if a connection to the FRED data server
is valid, and X = O otherwise.

Examples

Establish a connection, c, to a FRED data server:

c = fred("http://research.stlouisfed.org/fred2/%)

Verify that c is a valid connection:

X = isconnection(c)
x =1
See Also

close | fetch | get

5-181

5 Functions — Alphabetical List
P

5-182

haver

Connect to local Haver Analytics database

Syntax

H = haver(Databasename)

Arguments

‘Databasename ‘Local path to the Haver Analytics database.

Description

H = haver(Databasename) establishes a connection to a Haver Analytics database.

Requirement: Both read and write permissions are required on the database file to
establish a database connection. Otherwise, this error message appears: Unable to
open specified database Tile.

Examples

Create a connection to the Haver Analytics database at the path "d:\work\haver\data
\haverd.dat":

H = haver("d:\work\haver\data\haverd.dat")

See Also

close | isconnection | fetch | get

aggregation

aggregation

Set Haver Analytics aggregation mode

Syntax

X
X

aggregation (C)
aggregation (C,V)

Description
X = aggregation (C) returns the current aggregation mode.

X = aggregation (C,V) sets the current aggregation mode to V. The following table
lists possible values for V.

Value of V Aggregation mode |Behavior of aggregation function

0 strict aggregation does not fill in values for missing
data.

1 relaxed aggregation fills in missing data based on data
available in the requested period.

2 forced aggregation fills in missing data based on some
past value.

-1 Not recognized aggregation resets V to its last valid setting.

See Also

haver | close | info | nextinfo | fetch | get | isconnection

5-183

5 Functions — Alphabetical List
P

close

Close Haver Analytics database

Syntax

close(H)

Arguments

‘H ‘Haver Analytics connection object created with haver.

Description

close(H) closes the connection to the Haver Analytics database.

Examples

Establish a connection H to a Haver Analytics database:

H = haver("d:\work\haver\data\haverd.dat")

Close the connection:

close(H)

See Also

haver

5-184

fetch

fetch

Request data from Haver Analytics database

Syntax

d
d
d

fetch(c,variable)
fetch(c,variable,startdate,enddate)
fetch(c,variable,startdate,enddate,period)

Description

d = fetch(c,variable) returns historical data for the Haver Analytics variable s,
using the connection object c.

d = fetch(c,variable,startdate,enddate) returns historical data between the
dates startdate and enddate.

d = fetch(c,variable,startdate,enddate,period) returns historical data in
time periods specified by period.

Examples

Retrieve Variable Data

Connect to the Haver Analytics database.

c = haver("c:\work\haver\haverd.dat®);

Retrieve all historical data for the Haver Analytics variable "FFED". The descriptor for
this variable is Federal Funds [Effective] Rate (% p.a.).

variable = "FFED"; % return data for FFED
d = fetch(c,variable);

Display the first three rows of data.
d(1:3,:)

5-185

5 Functions — Alphabetical List
P

5-186

ans =
715511.00 2.38
715512.00 2.50
715515.00 2.50

d contains the numeric representation of the date in the first column and the closing
value in the second column.

Close the Haver Analytics database connection.

close(c)

Retrieve Variable Data for a Specified Date Range

Connect to the Haver Analytics database.

c = haver("c:\work\haver\haverd.dat®);

Retrieve historical data from January 1, 2005 through December 31, 2005 for *FFED".

variable = "FFED"; % return data for FFED
startdate = "01/01/2005"; % start of date range
enddate = "12/31/2005"; % end of date range
d = fetch(c,variable,startdate,enddate);

Display the first three rows of data.

d(1:3,:)

ans =
732315.00 2.25
732316.00 2.25
732317 .00 2.25

d contains the numeric representation of the date in the first column and the closing
value in the second column.

Close the Haver Analytics database connection.
close(c)
Retrieve Quarterly Data for a Specified Date Range

Connect to the Haver Analytics database.

fetch

c = haver("c:\work\haver\haverd.dat®);

Retrieve the information of the Haver Analytics variable "FFED". The descriptor for this
variable is Federal Funds [Effective] Rate (% p.a.).

variable = "FFED";
x = info(c,variable);
info returns the structure x containing fields describing the Haver Analytics variable.

Retrieve quarterly data. When you specify a date that is outside the date range in the
variable, you might experience unexpected results. To prevent this, use the EndDate
field for the end of the date range.

startdate = "06/01/2000°; % start of date range
enddate = x.EndDate; % end of date range
period = "q°; % quarterly data

d = fetch(c,variable,startdate,enddate,period)

Display the first three rows of data.

d(1:3,:)

ans =
730759.00 6.52
730851.00 6.50
730941.00 5.61

d contains the numeric representation of the date in the first column and the closing
value in the second column.

Close the Haver Analytics database connection.

close(c)

Input Arguments

¢ — Haver Analytics connection
connection object

Haver Analytics connection, specified as a connection object created using haver.

5-187

5 Functions — Alphabetical List
P

variable — Haver Analytics variable
string

Haver Analytics variable, specified as a string to denote which historical data to retrieve.
Example: "FFED"
Data Types: char

startdate — Start date
string | MATLAB date number

Start date, specified as a string or MATLAB date number denoting the beginning of the
date range to retrieve data.

Data Types: double | char

enddate — End date
string | MATLAB date number

End date, specified as a string or MATLAB date number denoting the end of the date
range to retrieve data.

Data Types: double | char

period — Period
Id- | 'W' | Im- | 'q' | -a

Period, specified as one of the following enumerated strings that denotes the time period
for the historical data.

+ "d" for daily values

+ "w" for weekly values

* "m" for monthly values
+ "g" for quarterly values

+ "a” for annual values

Data Types: char
Output Arguments

d — Historical data
matrix

5-188

fetch

Historical data, returned as a matrix with the numeric representation of the date in the
first column and the value in the second column.

See Also

close | get | haver | info | isconnection | nextinfo

5-189

5 Functions — Alphabetical List
P

5-190

get

Retrieve properties from Haver Analytics connection objects

Syntax

V = get(H, "PropertyName*)

V = get(H)

Arguments

H Haver Analytics connection object created with haver.

"PropertyName* A MATLAB string or cell array of strings containing property
names. The property name is Databasename.

Description

V = get(H, "PropertyName") returns a MATLAB structure containing the value of
the specified properties for the Haver Analytics connection object.

V = get(H) returns a MATLAB structure, where each field name is the name of a
property of H. Each field contains the value of the property.

Examples

Establish a Haver Analytics connection, HDAILY:

HDAILY = haver("d:\work\haver\data\haverd.dat")

Retrieve the name of the Haver Analytics database:

V = get(HDAILLY,{"databasename®})
V=
databasename: d:\work\haver\data\haverd.dat

get

See Also

close | isconnection | fetch | haver

5-191

5 Functions — Alphabetical List
P

info

Retrieve information about Haver Analytics variables

Syntax

D = info(H,S)

Arguments

H Haver Analytics connection object created with haver.

Haver Analytics variable.

Description

D = info(H,S) returns information about the Haver Analytics variable, S.

Examples

Establish a Haver Analytics connection H:

H = haver("d:\work\haver\data\haverd.dat")
Request information for the variable "FFED2":

D = info(H, "FFED2")

The following output is returned:

VarName: "FFED2*
StartDate: "01-Jan-1991-
EndDate: "31-Dec-1998*
NumberObs: 2088
Frequency: "D*
DateTimeMod: "02-Apr-2007 20:46:37"

5-192

info

Magnitude: O
DecPrecision: 2
DifType: 1
AggType: "AVG*
DataType: "%"
Group: "Z05*
Source: "FRB*
Descriptor: "Federal Funds [Effective] Rate (% p-a.)*
ShortSource: "History*
LongSource: “Historical Series”

See Also

close | isconnection | get | haver | nextinfo

5-193

5 Functions — Alphabetical List
P

5-194

isconnection

Determine if connections to Haver Analytics data servers are valid

Syntax

X = isconnection(H)

Arguments

‘H ‘Haver Analytics connection object created with haver.

Description

X = isconnection(H) returns X = 1 if the connection is a valid Haver Analytics
connection, and X = O otherwise.

Examples

Establish a Haver Analytics connection H:

H = HAVER("d:\work\haver\data\haverd.dat")

Verify that H is a valid Haver Analytics connection:

X = isconnection(H)
X =1
See Also

close | fetch | get | haver

nextinfo

nextinfo

Retrieve information about next Haver Analytics variable

Syntax

D = nextinfo(H,S)

Arguments

H Haver Analytics connection object created with the haver
function.

S Haver Analytics variable.

Description

D = nextinfo(H,S) returns information for the next Haver Analytics variable after
the variable, S.

Examples

Establish a Haver Analytics connection H:

H = haver("d:\work\haver\data\haverd.dat")
Request information for the variable following "FFED":
D = nextinfo(H, "FFED")
The following structure is returned:
VarName: "FFED2*
StartDate: "01-Jan-1991*

EndDate: "31-Dec-1998*
NumberObs: 2088

5-195

5 Functions — Alphabetical List
P

Frequency: "D*
DateTimeMod: "02-Apr-2007 20:46:37"
Magnitude: O
DecPrecision: 2
DifType: 1
AggType: "AVG"
DataType: "%"
Group: "Z05*
Source: "FRB*
Descriptor: "Federal Funds [Effective] Rate (% p-a.)*
ShortSource: "History*
LongSource: “Historical Series”

See Also

close | info | get | haver | Isconnection

5-196

havertool

havertool

Run Haver Analytics graphical user interface (GUI)

Syntax

havertool (H)

Arguments

‘H ‘Haver Analytics connection object created with haver.

Description

havertool (H) runs the Haver Analytics graphical user interface (GUI). The GUI
appears in the following figure.

5-197

5 Functions — Alphabetical List
P

5-198

n Haver Analytics El =] @
Database:
HAVERD.DAT
1
Browse ..
FCMA . 10]I 1
FCM12 J
FCM13 9l h "1 -
Fht L4 ! 1
" A I\ \
FCM16 I Al 'R 1\ L
FCP2 Mi o \ u| Y/ \
FCP22 - | Y v!, I L !
FFED ;“J b f
FFED2 6 /1\ [1.I /
FFED3 PTA F,-f | FYL)
FFED4 T A '
FFEDS 5t L f A | PLL
FFEDS l | | "'W W
FTBS#W A% 44
W
3 I 1 I 1 1 1 I
1967 1968 1969 1970 1971 1972 1973 1974 1975
Source: Historical Series, Agg. Type: AVG
Start Date: End Date: Workspace Variable:
- 03-Jan-1967 31-Dec-1974 FCHM1S Close

The GUI fields and buttons are:

+ Database: The currently selected Haver Analytics database.

* Browse: Allows you to browse for Haver Analytics databases, and populates the
variable list with the variables in the database you specify.

+ Start Date: The data start date of the selected variable.
+ End Date: The data end date of the selected variable.

+ Workspace Variable: The MATLAB variable to which havertool writes data for
the currently selected Haver Analytics variable.

+ Close: Closes all current connections and the Haver Analytics GUL.

Examples

Establish a Haver Analytics connection H:

havertool

H = haver("d:\work\haver\data\haverd.dat")

Open the graphical user interface (GUI) demonstration:

havertool (H)

See Also

haver

5-199

5 Functions — Alphabetical List
P

idc

Connect to Interactive Data data servers

Syntax

Connect = idc

Description

Connect = idc connects to the Interactive Data server. Connect is a connection handle
used by other functions to obtain data.

Examples

Connect to an Interactive Data server:

c = idc

See Also

close | isconnection | fetch | get

5-200

close

close

Close connections to Interactive Data data servers

Syntax

close(Connect)

Arguments

‘Connect Interactive Data connection object created with idc.

Description

close(Connect) closes the connection to the Interactive Data server.

Examples

Establish an Interactive Data connection, C:
c = idc
Close this connection:

close(c)

See Also

idc

5-201

5 Functions — Alphabetical List
P

fetch

Request data from Interactive Data data servers

Syntax

data
data
data
"Period®)

fetch(Connect, "Security®, "Fields")
fetch(Connect, "Security®, "Fields®, "FromDate", "ToDate")
fetch(Connect, "Security®, "Fields®, "FromDate", "ToDate",

data = fetch(Connect, ™", "GUlLookup”, "GUICategory"™)

Arguments

Connect Interactive Data connection object created with idc.

"Security” A MATLAB string containing the name of a security in a format
recognizable by the Interactive Data server.

"Fields* A MATLAB string or cell array of strings indicating specific
fields for which to provide data. Valid field names are in the file
@idc/idcfields.mat. The variable bbfieldnames contains
the list of field names.

"FromDate" Beginning date for historical data.

Note: You can specify dates in any of the formats supported by
datestr and datenum that show a year, month, and day.

"ToDate*" End date for historical data.

"Period*” Period within date range.

"GUICategory” GUI category. Possible values are:

* "F" (All valid field categories)
* "S" (All valid security categories)

5-202

fetch

Description

data = fetch(Connect, "Security”, "Fields") returns data for the indicated
fields of the designated securities. Load the file idc/idcFields to see the list of
supported fields.

data = fetch(Connect, "Security®, "Fields®, "FromDate", "ToDate")
returns historical data for the indicated fields of the designated securities.

data = fetch(Connect, "Security®, "Fields®, "FromDate", "ToDate",
"Period") returns historical data for the indicated fields of the designated securities
with the designated dates and period. Consult the Remote Plus documentation for a list
of valid"Period® values.

data = fetch(Connect, ™", "GUILookup”, "GUICategory") opens the Interactive
Data dialog box for selecting fields or securities.

Examples

Open the dialog box to look up securities:

D = fetch(Connect, ™", "GUILookup®,"S")

Open the dialog box to select fields:

D = fetch(Connect, " ", “"GUILookup*®,*F%)

See Also

close | isconnection | get | idc

5-203

5 Functions — Alphabetical List
P

5-204

get

Retrieve properties of Interactive Data connection objects

Syntax

value get(Connect, "PropertyName®)
value = get(Connect)

Arguments
Connect Interactive Data connection object created with idc.
PropertyName (Optional) A MATLAB string or cell array of strings
containing property names. Property names are:
+ "Connected*
+ "Connection*
* "Queued"
Description

value = get(Connect, "PropertyName") returns the value of the specified
properties for the Interactive Data connection object.PropertyName is a string or cell
array of strings containing property names.

value = get(Connect) returns a MATLAB structure. Each field name is the name of
a property of Connect, and each field contains the value of that property.

See Also

close | idc | isconnection

isconnection

isconnection

Determine if connections to Interactive Data data servers are valid

Syntax

X = isconnection(Connect)

Arguments

‘Connect ‘Interactive Data connection object created with idc.

Description

X = isconnection(Connect) returns X = 1 if the connection is a valid Interactive
Data connection, and X = O otherwise.

Examples

Establish an Interactive Data connection c:
c = idc

Verify that c is a valid connection:

X = isconnection(c)
x =1
See Also

close | fetch | get | idc

5-205

5 Functions — Alphabetical List

5-206

kx

Connect to Kx Systems, Inc. kdb+ databases

Syntax

k = kx(ip,p)

k = kx(ip,p,id)

Arguments

ip IP address for the connection to the Kx Systems, Inc. kdb+
database.

p Port for the Kx Systems, Inc. kdb+ database connection.

id The username:password string for the Kx Systems, Inc. kdb+
database connection.

Description

k = kx(ip,p) connects to the Kx Systems, Inc. kdb+ database given the IP address ip
and port number p.

k = kx(ip,p,id) connects to the Kx Systems, Inc. kdb+ database given the IP address
ip, port number p, and username:password string id.

Before you connect to the database, add The Kx Systems, Inc. file jdbc. jar to the
MATLAB javaclasspath using the javaaddpath command. The following example
adds jdbc. jar to the MATLAB javaclasspath c:\g\java:

Javaaddpath c:\g\java\jdbc.jar

Note: In earlier versions of the Kx Systems, Inc. kdb+ database, this jar file was named
kx. jar. If you are running an earlier version of the database, substitute kx. jar for
Jdbc. jar in these instructions to add this file to the MATLAB javaclasspath.

Examples

Run the following command from a DOS prompt to specify the port number 5001:

q tradedata.q -p 5001

Connect to a Kx Systems, Inc. server using IP address "LOCALHOST" and port number
5001:

k = kx("LOCALHOST",5001)
handle: [1x1 c]
ipaddress: "localhost”
port: 5001

See Also

close | exec | get | fetch | tables

5-207

5 Functions — Alphabetical List
P

close

Close connections to Kx Systems, Inc. kdb+ databases

Syntax

close(k)

Arguments

‘ k ‘Kx Systems, Inc. kdb+ connection object created with kx.

Description

close (k) closes the connection to the Kx Systems, Inc. kdb+ database.

Examples

Close the connection, k, to the Kx Systems, Inc. kdb+ database:

close(k)

See Also
kx

5-208

exec

exec

Run Kx Systems, Inc. kdb+ commands

Syntax

exec(k,command)
exec(k,command,pl,p2,p3)
exec(k,command,pl)
exec(k,command,pl,p2)
exec(k,command,pl,p2,p3)
exec(k,command,pl,p2,p3,sync)

Arguments

k Kx Systems, Inc. kdb+ connection object created with kx.

command Kx Systems, Inc. kdb+ command issued using the Kx Systems, Inc. kdb
+ connection object created with the kx function.

pl,p2,p3 Input parameters for Command.

Description

exec(k,command) executes the specified command in Kx Systems, Inc. kdb+ without
waiting for a response.

exec(k,command, pl,p2,p3) executes the specified command with one or more input
parameters without waiting for a response.

exec(k,command, pl) executes the given command with one input parameter without
waiting for a response.

exec(k,command, pl,p2) executes the given command with two input parameters
without waiting for a response.

exec(k,command,pl,p2,p3) executes the given command with three input parameters
without waiting for a response.

5-209

5 Functions — Alphabetical List
P

5-210

exec(k,command,pl,p2,p3,sync) executes the given command with three input
parameters synchronously and waits for a response from the database. Enter unused
parameters as empty. You can enter sync as 0 (default) for asynchronous commands and
as 1 for synchronous commands.

Examples

Retrieve the data in the table trade using the connection to the Kx Systems, Inc. kdb+
database, K:

k = kx("localhost*®,5001);
Use the exec command to sort the data in the table trade in ascending order.

exec(k, "“date xasc trade");
Subsequent data requests also sort returned data in ascending order.

After running

q tradedata.q -p 5001
at the DOS prompt, the commands

k = kx("localhost”,5001);
exec(k, ""DATE XASC “TRADE®");
sort the data in the table trade in ascending order. Data later fetched from the table will

be ordered in this manner.

See Also

fetch | insert | kx

fetch

fetch

Request data from Kx Systems, Inc. kdb+ databases

Syntax

d = fetch(k,ksgl)

d = fetch(k,ksqgl,pl,p2,p3)

Arguments

k Kx Systems, Inc. kdb+ connection object created with kx.
ksqgl The Kx Systems, Inc. kdb+ command.

pl,p2,p3 Input parameters for the ksql command.
Description

d = fetch(k,ksqgl) returns data from a Kx Systems, Inc. kdb+ database in a
MATLAB structure where K is the Kx Systems, Inc. kdb+ object and ksql is the Kx kdb
+ command. ksql can be any valid kdb+ command. The output of the fetch function is
any data resulting from the command specified in ksql.

d = fetch(k,ksqgl,pl,p2,p3) executes the command specified in ksql with one or
more input parameters, and returns the data from this command.

Examples

Run the following command from a DOS prompt to specify the port number 5001:
q tradedata.q -p 5001

Connect to a Kx Systems, Inc. server using IP address "localhost"™ and port number
5001.:

5-211

5 Functions — Alphabetical List
P

k = kx("localhost*®,5001);

Retrieve data using the command "select from trade-:

d = fetch(k,"select from trade®);
d =
sec: {5000x1 cell}
price: [5000x1 double]
volume: [5000x1 int32]
exchange: [5000x1 double]
date: [5000x1 double]

Retrieve data, passing an input parameter "ACME" to the command "select from
trade™:

d
d

fetch(k, "totalvolume®, "ACME") ;

volume: [1253x1 int32]

This is the total trading volume for the security ACME in the table trade. The function
totalvolume is defined in the sample Kx Systems, Inc. kdb+ file, tradedata.q.

See Also

exec | insert | kx

5-212

get

get

Retrieve Kx Systems, Inc. kdb+ connection object properties

Syntax

v = get(k, "PropertyName*")
v = get(k)
Arguments
k Kx Systems, Inc. kdb+ connection object created with kx.
"PropertyName* A string or cell array of strings containing property names. The
property names are:
* "handle*®
* T"ipaddress”
* “port”
Description

v = get(k, "PropertyName") returns a MATLAB structure containing the value of
the specified properties for the Kx Systems, Inc. kdb+ connection object.

v = get(k) returns a MATLAB structure where each field name is the name of a
property of k and the associated value of the property.

Examples
Get the properties of the connection to the Kx Systems, Inc. kdb+ database, K:
get(k)

handle: [1x1 c]

Vv
Vv

5-2

13

5 Functions — Alphabetical List
P

ipaddress: "localhost”
port: "5001*

See Also

close | exec | fetch | insert | kx

5-214

insert

insert

Write data to Kx Systems, Inc. kdb+ databases

Syntax

insert(k,tablename,data)
x = insert(k,tablename,data,sync)

Arguments

k The Kx Systems, Inc. kdb+ connection object created with kx.
tablename The name of the Kx Systems, Inc. kdb+ Tablename
data The data that insert writes to the Kx Systems, Inc. kdb+ Tablename.

Description

insert(k,tablename,data) writes the data, data, to the Kx Systems, Inc. kdb+
table, tablename.

x = insert(k,tablename,data,sync) writes the data, data, to the Kx Systems,
Inc. kdb+ table, tablename, synchronously. For asynchronous calls, enter sync as 0
(default), and for synchronous calls, enter sync as 1.

Examples

For the connection to the Kx Systems, Inc. kdb+ database, k, write data from ACME to the
specified table:

insert(k, "trade”,{" “ACME",133.51,250,6.4,"2006.10.24"})

See Also
close | fetch | get | tables

5-215

5 Functions — Alphabetical List
P

isconnection

Determine if connections to Kx Systems, Inc. kdb+ databases are valid

Syntax

X = isconnection(k)

Arguments

‘k ‘Kx Systems, Inc. kdb+ connection object created with kx.

Description

x = isconnection(k) returns x = 1 if the connection to the Kx Systems, Inc. kdb+
database is valid, and X = O otherwise.

Examples

Establish a connection to a Kx Systems, Inc. kdb+ database, k:

k = kx("localhost*®,5001);

Verify that K is a valid connection:

X = isconnection(k)
x =1
See Also

close | fetch | get | kx

5-216

tables

tables

Retrieve table names from Kx Systems, Inc. kdb+ databases

Syntax

t = tables(k)

Arguments

k The Kx Systems, Inc. kdb+ connection object created with the kx
function.

Description

t = tables(k) returns the list of tables for the Kx Systems, Inc. kdb+ connection.

Examples

Retrieve table information for the Kx Systems, Inc. kdb+ database using the connection

k:

t = tables(k)
t =
"intraday”
"seclist”
"trade”
See Also

exec | fetch | insert | kx

5-217

5 Functions — Alphabetical List
P

rdth

Connect to Thomson Reuters Tick History

Syntax

r = rdth(username,password)
r = rdth(username,password,[],flag)
Description

r = rdth(username,password) creates a Thomson Reuters Tick History connection
to enable intraday tick data retrieval.

r = rdth(username,password, [],flag) sets the reference data flag Flag to toggle
the return of reference data.

Examples

To create a Thomson Reuters Tick History connection, the command

r = rdth("user@company.com”, "mypassword"”)
returns

r =

client: [1x1 com.thomsonreuters.tickhistory.
webservice.client_RDTHApiClient]

user: “user@company.com®

Suppose you want to get the intraday price and volume information for all ticks of
type Trade. To determine which fields apply to the message type Trade and the
requestType of the Trade message, the command:

v = get(r,’MessageTypes~’)
returns

v = RequestType: {31x1 cell}

5-218

rdth

Name: {31x1 cell}
Fields: {31x1 cell}
The command

v.Name
then returns

ans =
“"C&E Quote*®
“Short Sale*
“Fund Stats”
"Economic Indicator*”
"Convertibles Transactions”
“F1 Quote-*
"Dividend”
"Trade”
"Stock Split”
"Settlement Price”
" Index"”
“Open Interest”
“Correction”
“Quote*
“0TC Quote*®
"Stock Split”
"Market Depth*
"Dividend”
"Stock Split”
"Market Maker*®
"Dividend”
"Stock Split”
"Intraday 1Sec”
"Dividend”
"Intraday 5Min*
"Intraday 1Min*
"Intraday 10Min*®
"Intraday 1Hour*
"Stock Split”
"End OFf Day"
"Dividend”

The command

J = find(strcmp(v.Name,’Trade”));
returns

1= 8

5-219

5 Functions — Alphabetical List
P

The command

v._Name{j}
returns

ans = Trade
The command

v.RequestType{8}
returns

ans = TimeAndSales
The command

v.Fields{j}
returns

ans =

"Exchange ID*

"Price”

Volume

“"Market VWAP®

Accumulative Volume

"Turnover"®

"Buyer ID*

“Seller ID"

"Qualifiers”

"Sequence Number*®

"Exchange Time*

"Block Trade*

"Floor Trade®

"PE Ratio”

"Yield”

“Implied Volatility”

"Trade Date*

"Tick Direction”

"Dividend Code*

"Adjusted Close Price*

"Price Trade-Through-Exempt Flag*®

"Irregular Trade-Through-Exempt Flag*

"TRF Price Sub Market ID*

"TRF*

"Irregular Price Sub Market ID*
To request the Exchange ID, Price, and Volume of a security’s intraday tick for a given
day and time range the command

5-220

rdth

x = Ffetch(r,"ABCD.O",{"Exchange ID","Price", "Volume"}, ...
{"09/05/2008 12:00:06","09/05/2008 12:00:10"}, - -.
"TimeAndSales”,"Trade®, "NSQ", "EQU");

returns data similar to

X =

"ABCD.O" ~"05-SEP-2008" "12:00:08.535" ...

"Trade” "NAS*™ "85.25" "100*

"ABCD.O" *"05-SEP-2008" "12:00:08.569" ...

"Trade” "NAS*™ "85.25" "400"
To request the Exchange ID, Price, and Volume of a security’s intraday tick data for an
entire trading day, the command

x = Ffetch(r,"ABCD.O",{“Exchange ID”,"Price",”Volume’}, ...
"09/05/2008", "TimeAndSales", "Trade", "NSQ", "EQU") ;
returns data similar to

X =

"ABCD.O" "05-SEP-2008" "08:00:41.142" ...
"Trade*” "NAS* 51" 100"
"ABCD.O" "05-SEP-2008" "08:01:03.024" ...
"Trade*” "NAS* "49_.35" 100"
"ABCD.O" "05-SEP-2008" "19:37:47.934" _ ..
"Trade*” "NAS* "47.5" "1200"
"ABCD.O" "05-SEP-2008" "19:37:47.934" _ ..
"Trade*” "NAS* "47.5" *300*
"ABCD.O" "05-SEP-2008" "19:59:33.970" ...
"Trade*” "NAS* 47" 173"
To clean up any remaining requests associated with the rdth connection use:

close(r)

To create a Thomson Reuters Tick History connection so that subsequent data requests
do not return reference data, use:

r = rdth("user@company.com”, "mypassword”, [],false)
returns

r =
client: [1x1 com.thomsonreuters.tickhistory.webservice.TRTHApiServiceStub]
user: “user@company.com”
password - "hkAkAkAAAAAAA"
cred: [1x1 com.thomsonreuters.tickhistory.webservice.types.CredentialsHeaderE]
refDataFlag: 0

The property flag can be modified after making the connection with:

5-221

5 Functions — Alphabetical List
P

r_refDataFlag = true
or
r.refDataFlag = false

To clean up any remaining requests associated with the rdth connection use:

close(r)

See Also

close | fetch | get

5-222

close

close

Close Thomson Reuters Tick History connection

Syntax

close(r)

Description

close(r) closes the Thomson Reuters Tick History connection, r.

See Also
rdth

5-223

5 Functions — Alphabetical List
P

5-224

fetch

Request Thomson Reuters Tick History data

Syntax

x = fetch(r,sec)

X =

fetch(r,sec,tradefields,daterange, reqtype,messtype,exchange,domain)

X =

fetch(r,sec,tradefields,daterange, reqtype,messtype,exchange,domain,marketdeptt

Description

x = Fetch(r,sec) returns information about the security, sec, such as the code,
currency, exchange, and name. r is the Thomson Reuters Tick History connection object.

X =

fetch(r,sec,tradefields,daterange, reqtype,messtype,exchange,domain)
returns data for the request security, sec, based on the type request and message types,
reqtype and messtype, respectively. Data for the fields specified by tradefields is
returned for the data range bounded by daterange. Specifying the exchange of the
given security improves the speed of the data request. domain specifies the security type.

X =

fetch(r,sec,tradefields,daterange, reqtype,messtype,exchange,domain,marketdeptt
additionally specifies the depth of level 2 data, marketdepth, to return for a

"MarketDepth" request type. marketdepth must be a numeric value between 1 and

10, returning up to 10 bid/ask values for a given security.

Note: Do not use date ranges for end of day requests. You can specify a range of hours on
a single day, but not a multiple day range.

Examples

To create a Thomson Reuters Tick History connection, the command

fetch

r = rdth("user@company.com”, "mypassword"”)
returns

r =

client: [1x1 com.thomsonreuters.tickhistory.
webservice.client.RDTHApiClient]

user: “user@company.com*”

paSSWO rd - " hkAkAkAAhkhhAkAA"

To get information pertaining to a particular security, the command

d = fetch(r,"G00G.0",{"Volume", "Price","Exchange ID"},...
{"09/05/2008 12:00:00","09/05/2008 12:01:00"}, ...
"TimeAndSales”, "Trade", "NSQ", "EQU")

returns data starting with (not all data is shown):

d =

"H#RICT "Date[L]" "Time[L]" "Type". ..
"Ex/Cntrb.ID" "Price”

"G00G.0" "05-SEP-2008" "12:00:01.178" "Trade™...
"NAS* "443.86"

Volume

"200"

The command

d = fetch(r,"G00G.0",{"Volume™, "Last"},{"09/05/2008"}, ...
"EndOfDay", "End OFf Day","NSQ","EQU™)

returns
d =
"#RIC" "Date[L]" "Time[L]"
"Type*® "Last" “*Volume*

"GO0G.0o*" "05-SEP-2008*" "23:59:00.000"
"End Of Day~ 444 25" "4538375*
For

x = Ffetch(r,*G00G.0")

for example, the exchange of the security is X . Exchange or NSQ. To determine the asset
domain of the security, use the value of X.Type, in this case 113. Using the information
from v = get(r),

J = Ffind(v.InstrumentTypes.Value == 113)
returns

j =46

5-225

5 Functions — Alphabetical List
P

5-226

The command

v. InstrumentTypes.Value(j)
returns

ans =
113
The command

v. InstrumentTypes.Name(j)
returns

ans =
"Equities”

The command

v.AssetDomains.Value(strcmp(v. InstrumentTypes.Name(j), - - -

v.AssetDomains.Name))
returns

ans =
“EQU*

Knowing the security exchange and domain helps the interface to resolve the security

symbol and return data more quickly.

To use a "MarketDepth” level of 3, enter:

AaplTickData = fetch(R,"AAPL.O",{"Bid Price","Bid Size"},...
{now-.05,now}, "MarketDepth*", "Market Depth®,"NSQ","EQU",3);

More About
Tips

* To obtain more information request and message types and their associated field lists,
use the command get(r).

See Also

rdth | close | get

get

get

Get Thomson Reuters Tick History connection properties

Syntax

v = get(r, "propertyname*”)

v = get(r)

Description

v = get(r, "propertyname”) returns the value of the specified properties for the
rdth connection object. "PropertyName” is a string or cell array of strings containing
property names.

v = get(r) returns a structure where each field name is the name of a property of r,

and each field contains the value of that property.

Properties include:

AssetDomains
BondTypes

Class

Countries
CreditRatings
Currencies
Exchanges
FuturesDel iveryMonths
InflightStatus
InstrumentTypes
MessageTypes
OptionExpiryMonths

5-227

5 Functions — Alphabetical List
P

* Quota

+ RestrictedPEs
*+ Version
Examples

To create a Thomson Reuters Tick History connection, the command

r = rdth("user@company.com”, "mypassword"®)
returns

r =

client: [1x1 com.thomsonreuters.tickhistory. ...
webservice.client.RDTHApiClient]

user: “user@company.com”

To get a listing of properties for the rdth connection, the command

v = get(r)
returns
VvV =

AssetDomains: [1x1 struct]
BondTypes: {255x1 cell}
Class: "class com.thomsonreuters. ...
tickhistory._webservice.client_RDTHApiClient”
Countries: {142x1 cell}
CreditRatings: {82x1 cell}
Currencies: [1x1 struct]
Exchanges: [1x1 struct]
FuturesDeliveryMonths: {12x1 cell}
InflightStatus: [1x1 com.thomsonreuters. ...
tickhistory._webservice.types. InflightStatus]
InstrumentTypes: [1x1 struct]
MessageTypes: [1x1 struct]
OptionExpiryMonths: {12x1 cell}
Quota: [1x1 com.thomsonreuters. ...
tickhistory._webservice.types.Quota]
RestrictedPEs: {2758x1 cell}
Version: [1x1 com.thomsonreuters. ...
tickhistory.webservice.types.Version]

5-228

get

See Also
rdth | fetch

5-229

5 Functions — Alphabetical List
P

isconnection

Determine if Thomson Reuters Tick History connections are valid

Syntax

X = isconnection(r)

Description

X = isconnection(r) returns 1 if r is a valid rdth client and O otherwise.

Examples

Verify that r is a valid connection:

r rdth("user@company.com”, "mypassword”) ;

X = isconnection(r)
x =1
See Also

rdth | close | fetch | get

5-230

status

status

Status of FTP request for Thomson Reuters Tick History data

Syntax

[s.qp] = status(r,x)

Description

[s,qp] = status(r,Xx) returns the status and queue position of the Thomson Reuters
Tick History (TRTH) FTP request handle, Xx. When s is equal to "Complete”, download
the file from the TRTH server manually or programmatically.

Examples

Check the status of your FTP request:

X = submitftp(r, "G00G.0",{"Exchange ID","Price”, "Volume™}, ...
{(floor(now))-10, (Floor(now))}, "TimeAndSales®,"*Trade", ...
*NSQ™, "EQU™)

s = [1;

while ~strcmp(s, "Complete~)
[s.qgp] = status(r,x);

end

Optionally, download the file from the TRTH server programmatically. The data file is
generated in a directory, api-results, on the server. The file has extension csv.gz.
filename = ["/api-results/® char(x) "-report.csv.gz"];
urlwrite(["https://tickhistory.thomsonreuters.com/HttpPull/Download?”. ..

"user=" username "&pass=" password "&File=" filename""],...
"rdth_results.csv.gz®);

This call to urlwrite saves the downloaded file with the name rdth_results.csv.gz
in the current directory.

5-231

5 Functions — Alphabetical List
P

5-232

submitftp

Submit FTP request for Thomson Reuters Tick History data

Syntax

X = submitftp(r, sec)

X = submitftp(r, sec, tradefields, daterange, reqtype,
messtype, exchange, domain)

X = submitftp(r,sec,tradefields, daterange, reqtype,
messtype, exchange, domain, marketdepth)

Description

X = submitftp(r, sec) returns information about the security, sec, such as the
code, currency, exchange, and name for the given trth connection object, r.

x = submitftp(r, sec, tradefields, daterange, reqtype,

messtype, exchange, domain) submits an FTP request for the request security, sec,
based on the type request and message types, reqtype and messtype, respectively.
Data for the fields specified by tradefields is returned for the data range bounded by
daterange. Specifying the exchange or the given security improves the speed of the
data request. domain specifies the security type.

X = submitftp(r,sec,tradefields, daterange, reqtype,

messtype, exchange, domain, marketdepth) additionally specifies the depth of
level 2 data, marketdepth, to return for a *"MarketDepth” request type. marketdepth
must be a numeric value between 1 and 10, returning up to 10 bid/ask values for a given
security.

To monitor the status of the FTP request, enter the command
[s.,ap] = status(r,x)

The status function returns a status message and queue position. When S =
"Complete”, download the resulting compressed .csV file from the TRTH servers. Once
the .csv file has been saved to disk, use rdthloader (" filename") to load the data

submitftp

into the MATLAB workspace. To obtain more information request and message types and
their associated field lists, use the command get(r).

Examples

Specify parameters for FTP request:

submitftp(r,{"1BM_N", "GO0G.0"},
{"Open*, "Last","Low", "High"},
{floor(now)-100, floor(now)}, .
"EndOfDay", "End OFf Day", "NSQ","EQU");
To use a "MarketDepth*® level of 3, enter:

AaplTickData = submitftp(R, "AAPL.O",{"Bid Price","Bid Size"},...
{now-.05,now}, "MarketDepth*", "Market Depth®,"NSQ", "EQU",3);

See Also

fetch | status | get | rdth | rdthloader

5-233

5 Functions — Alphabetical List
P

rdthloader

Retrieve data from Thomson Reuters Tick History file

Syntax

rdthloader(file)

rdthloader(file, "date”,{DATE1})
rdthloader(file, "date”,{DATE1, DATE2})
rdthloader(file, "security” ,{SECNAME})
rdthloader(file, "start”,STARTREC)
rdthloader(file, "records”, NUMRECORDS)

X X X X X X
L I O | R VR |

Arguments

Specify the following arguments as name-value pairs. You can specify any combination of
name-value pairs in a single call to rdthloader.

file Thomson Reuters Tick History file from which to retrieve
data.
"date" Use this argument with {DATE1, DATEZ2} to retrieve data

between and including the specified dates. Specify the dates
as numbers or strings.

"security” Use this argument to retrieve data for SECNAME, where
SECNAME is a cell array containing a list of security
identifiers for which to retrieve data.

"start” Use this argument to retrieve data beginning with the
record STARTREC, where STARTREC is the record at which
rdthloader begins to retrieve data. Specify STARTREC as a
number.

"records” Use this argument to retrieve NUMRECORDS number of
records.

5-234

rdthloader

Description

X = rdthloader(Ffile) retrieves tick data from the Thomson Reuters Tick History file
File and stores it in the structure X.

X = rdthloader(Ffile, "date” ,{DATE1}) retrieves tick data from File with date
stamps of value DATEL.

x = rdthloader(file, "date” ,{DATE1, DATE2}) retrieves tick data from File
with date stamps between DATE1 and DATE2.

x = rdthloader(file, "security” ,{SECNAME}) retrieves tick data from File for
the securities specified by SECNAME.

X = rdthloader(Ffile, "start”,STARTREC) retrieves tick data from file beginning
with the record specified by STARTREC.

X = rdthloader(file, "records”, NUMRECORDS) retrieves NUMRECORDS number of
records from File.

Examples

Retrieve all ticks from the file " file.csv”® with date stamps of "02/02/2007":

X = rdthloader("file.csv", "date”,{"02/02/2007"})
Retrieve all ticks from "File.csv™ between and including the dates "02/02/2007" and
"02/03/2007":

X = rdthloader("file.csv", "date”,{"02/02/2007", . ..
*02/03/2007"})
Retrieve all ticks from "File.csv" for the security "XYZ.0":

X = rdthloader("file.csv", "security”,{"XYZ.0"})
Retrieve the first 10,000 tick records from "Fille.csv":

X = rdthloader(“file.csv", "records”,10000)
Retrieve data from "Ffile.csv", starting at record 100,000:

X = rdthloader("file.csv", "start”,100000)
Retrieve up to 100,000 tick records from "Ffille.csv", for the securities "ABC.N"
and "XYZ.0", with date stamps between and including the dates *02/02/2007" and
"02/03/2007":

5-235

5 Functions — Alphabetical List
P

x = rdthloader("file.csv", "records”,100000, ...

"date”,{"02/02/2007","02/03/2007"}, . - -

"security” ,{"ABC_N","XYZ_.0"})

See Also

reuters | rnseloader

5-236

reuters

reuters

Create Reuters sessions

Syntax

r = reuters (sessionName, serviceName)

r = reuters (sessionName, serviceName, user, position)

Arguments

r Reuters session object created with reuters.

sessionName Name of the Reuters session, of the form
myNameSpace: :mySession.

serviceName Name of the service you use to connect to the data server.

user User ID you use to connect to the data server.

position IP address of the data server to which you connect to retrieve
data.

Description

You must configure your environment before you use this function to connect to a
Reuters data server. For details, see “Reuters Data Service Requirements” on page 1-5.

r = reuters (sessionName, serviceName) starts a Reuters session where
sessionName is of the form myNameSpace: :mySession and serviceName specifies the
name of the service you use to connect to the data server.

r = reuters (sessionName, serviceName, user, position) startsa

Reuters session where sessionName is of the form myNameSpace: :mySession and
serviceName is the service to use, user is the user ID, and position is the IP address
of the machine to which you connect to retrieve data. Use this form of the command if
you require DACS authentication.

5-237

5 Functions — Alphabetical List
P

5-238

Examples

Connecting to Reuters Data Servers

Connect to a Reuters data server with session name "myNS: :remoteSession” and
service name "dIDN_RDF":

r = reuters ("myNS::remoteSession”, "dIDN_RDF")

r =

session: [1x1 com.reuters.rfa.internal._session.Sessionlmpl]
user: []

serviceName: “dIDN_RDF*

standardPl:

[1x1 com.reuters.rfa.common.StandardPrincipalldentity]
eventQueue: [Error]

marketDataSubscriber:

[1x1 com.reuters.rfa.internal _session.
MarketDataSubscriberimpl]
marketDataSubscriberlnterestSpec:

[1x1 com.reuters.rfa.session.MarketDataSubscriber
InterestSpec]

client:

[1x1 com.mathworks.toolbox.datafeed.MatlabReutersClient]
mdsClientHandle:

[1x1 com.reuters.rfa.internal.common.Handlelmpl]

Note: If you do not use the Reuters DACS authentication functionality, the following
error message appears:

com.reuters.rfa.internal .connection.Connectionlmpl
initializeEntitlementsINFO:
com.reuters.rfa._connection.ssl_myNS_RemoteConnection
DACS disabled for connection myNS::RemoteConnection

Connecting to Reuters Data Servers Using DACS Authentication

1 Connect to a Reuters data server using DACS authentication, with session name
"myNS: :remoteSession”, service name "dIDN_RDF", user id "ab123", and data
server IP address "111.222.333.444/net":

r = reuters ("myNS::remoteSession®, "dIDN_RDF",

reuters

"ab123", "111.222.333.444/net")

¥ RFA Configuration Editor

o= Systenn ;: Key Walue -
¢ Users connectionType 55L
7 com dacs_CbeEnabled false
¢ revlers dacs_Generatelocks Talse
¥ “;" dacs_SbePubEnabled falsa
I’ . S ‘dacs_SbeSubEnabled alse
5 Cormontions downloadDataDict true
= RTICconnection poiNumber B0
o RNICwithDacs serverList 111.222.333.134
% userhame w335
¥
o remoleRTICSassion
o pemoleSession
o remoleRTICWIDaCS
~ =]
il I 1 [v]
E

4

D

¥ RFA Configuration Editor

File Edit View Setling Help

o Systei Ef] Key | Valug -
¢ Users connectionList |Humnmonnacinn
¢ com
7 rewlers
7 ra
o _System
¢ NS
& Conmections
= RTICconnection
& RVconnection
= RemoteConnection
¢ Sessions
o= TickByTickSession
remoteSession
= =
4 I 1 0
E

D

5-239

5 Functions — Alphabetical List
P

2 Add the following to your connection configuration:
dacs_CbeEnabled=false

dacs_SbePubEnabled=false
dacs_SbeSubEnabled=false

3 If you are running an SSL connection, add the following to your connection
configuration:

dacs_GeneratelLocks=false

Connecting to Reuters Data Servers Without DACS Authentication

Connect to a Reuters data server with session name "myNS: :remoteSession” and
service name "dIDN_RDF", without using DACS:

r = reuters ("myNS::remoteSession®, "dIDN_RDF®)

Establishing an RTIC (TIC-RMDS Edition) Connection to Reuters Data
Servers

* Non-DACs-enabled
Make an RTIC (TIC-RMDS Edition) connection to a Reuters data server without
DACS authentication, with session name "myNS: : remoteRTICSession”, service
name " IDN_RDF":

r = reuters ("myNS::remoteRTICSession®, " IDN_RDF®)

5-240

reuters

[4]

4

=101x|

Ef Ky ! Wale

connactionType 54553

|dats_CbeEnabled false

dacs_ShePubEnabled falsa

ldacs_8beSubEnabled 158

:umroaubatal:llr:t Hrug

‘seniceList ROF

subscriberRy_Connaction \Rvconnection

[4]

1]

I3

&

[0

1

»

This RTIC connection depends on the key subscriber RVConnection. Your
RVConnection configuration should look as follows:

5-241

5 Functions — Alphabetical List

5-242

= RIlCconnection

P

F—
¢ Sessions

o remoteRTICSession

o FEfnoleSession
o remoleRTICwilhDacs

»
-

3 =loi x|
1 Key Value
connectionType Ry
dacs_sbePubEnabled false
false

dacs_SheSubEnabled
:dnamnn

:I‘:E‘Ml‘ll‘ic

sendce

Jh:lﬂ 11.222 333.131 9450
111,222333002252.28
a3

[4]

(1]

&

[«

[« La]r

1»

The RTICConnection configuration is referenced by the session
remoteRTICSession, as shown in the following figure.

reuters

=I0fx
File Edit View Setting Help
o= Syrstenm e Ky Value -
7 UserS M cannectionList RTICconnection
? com
7 reulers
% a
o _System
7 S
7 Connections
= RTICconnection
= RTICwithDacs
o AViconnection
o RemoteConnection
7 Sessions
o TickByTickSession

o remoleRTICwilhDacs
o Pl S eSS0

[v]

Messages like the following may appear in the MATLAB Command Window when you
establish a non-DACs-enabled connection. These messages are informational and can
safely be ignored.

Oct 5, 2007 2:28:31 PM
com.reuters.rfa.internal .connection.
Connectionlmpl initializeEntitlements
INFO: com.reuters.rfa.connection.ssl.. ..
myNS .RemoteConnection
DACS disabled for connection myNS::RemoteConnection

DACs-enabled

Make an RTIC (TIC-RMDS Edition), DACS-enabled connection to a Reuters
data server, with session name "myNS: :remoteRTICWIthDACs", service name
"IDN_RDF*", user id "ab123", and data server IP address "111.222.333.444/net":

r = reuters ("myNS::remoteRTICWithDACs®", "IDN_RDF", ...
"ab123", "111.222.333.444/net")

5-243

5 Functions — Alphabetical List

¥ RFA Configuration Editor

|
mLi

[

Key | Walue
tonnectionType |sassa
dacs_CbeEnabled ltrue
dacs_ShePubEnabled false
dacs_&heSubEnabled Talse
:uml‘oad:la‘tanlnt Hrug
serviceLlst]RDF
subscriberRY_Connection :R\ﬂ:unnecuun

[4]

4|

-

nfo: RTICwithDacs exported to ireutersconflgaml

]

|4

0

D

This RTIC connection depends on the key subscriber RVConnection.
RVConnection configuration should look as follows:

5-244

Your

reuters

] RF & Condiguration Editor E =101 x|
File Edit View Setting Help
o= Systen - : Ky Walug -
7 Ui connectionType Ry
¥ com dacs_SbePubEnabled false
- rewers dacs_SbeSubEnabled false
igtin daemon tep111.222 333131 8450
o _System
¢ NS nEtwork 111.222.3330;2252.28
¢ Connections senice 9453
& RTICconnection
-,
& Rvconnection !
o RemoteConnection
¢ Sessions
o remoleRTICSession
o pEmoleSession
o remoteRTICwithDacs
- -
4] 4 [

|«

[v]

Messages like the following may appear in the MATLAB Command Window when you
establish a DACs-enabled connection. These messages are informational and can be

ignored safely.

Oct 5, 2007 2:27:14 PM ...
com.reuters.rfa.internal .connection.
ConnectionImpl$ConnectionEstablishmentThread runimpl
INFO: com.reuters.rfa.connection.sass3.myNS_.RTICwithDacs
Connection successful: ...
componentName :myNS::RTICwithDacs,
subscriberRVConnection:
{service: 9453, network: 192.168.107.0;225.2.2.8,
daemon: tcp:192.168.107.131:9450}
Oct 5, 2007 2:27:14 PM
com.reuters.rfa.internal .connection.sass3.. ..
Sass3LoggerProxy log
INFO: com.reuters.rfa.connection.sass3.myNS_.RTICwithDacs
SASS3JINI: Received advisory from RV session@
(9453,192.168.107.0;225.2.2.8,1tcp:192.168.107.131:9450):
_RV_INFO.SYSTEM.RVD.CONNECTED
Oct 5, 2007 2:27:14 PM
com.reuters.rfa.internal .connection.Connectionimpl

5-245

5 Functions — Alphabetical List
P

5-246

makeServicelnfo

WARNING: com.reuters.rfa.connection.sass3....
myNS.RTICwithDacs

Service list configuration has no
alias defined for network

serviceName IDN_RDF

If messages like the following appear in the MATLAB Command Window when you

establish a DACs-enabled connection:

SEVERE: com.reuters.rfa.entitlements._ Default.Global
DACS initialization failed:
com.reuters.rfa.dacs.AuthorizationException:

Cannot start the DACS Library thread due to -
Cannot locate JNI library - RFADacsLib

Then add an entry to the $SMATLAB/toolbox/local/librarypath.txt file that

points to the folder containing the following files:

FDacsLib.dll
+ sass3j.dll
+ sipc32.dll

See Also

close | deleteric | get | stop | rmdsconfig | addric | contrib | fetch |
history

addric

addric

Create Reuters Instrument Code

Syntax

addric(r,ric,fid,fval ,type)

Description

addric(r,ric, fid,fval ,type) creates a Reuters Instrument Code, ric, on the
service defined by the Reuters session, r. Supply the field ID or name, fid, and the field
value, fval. Specify whether the RIC type is "live" or "static” (default).

Examples

Create a live RIC called myric with the fields "trdprc_1" (field ID 6) and "bid" (field
ID 22) set to initial values of O:

addric(r,"myric”,{trdprc_1","bid"},{0,0}, " live~)

Create a live RIC called myric with the fields trdprc_1 and bid set to initial values of
0:

addric(r,"myric*,{6,22},{0,0},"live")

See Also

contrib | fetch | reuters | deleteric

5-247

5 Functions — Alphabetical List
P

close

Release connections to Reuters data servers

Syntax

close(r)

Arguments

‘ r Reuters session object created with reuters.

Description

close(r) releases the Reuters connection r.

Examples

Release the connection r to the Reuters data server, and unsubscribe all requests
associated with it:

close(r)

See Also

reuters

5-248

contrib

contrib

Contribute data to Reuters data feed

Syntax

contrib(r,s,fid, fval)

Description

contrib(r,s,fid, fval) contributes data to a Reuters data feed. r is the Reuters
session object, and s is the RIC. Supply the field IDs or names, Fid, and field values,
fval.

Examples

Contribute data to the Reuters datafeed for the Reuters session object r and the RIC
"myric”. Provide a last trade price of 33.5.

contrib(r, "myric*®, "trdprc_1",33.5)

Contribute an additional bid price of 33.8:

contrib(r, "myric®,{"trdprc_17,"bid"},{33.5,33.8})
Submit value 33.5 for field 6 (*trdprc_1"):

contrib(r, "myric*,6,33.5)

Add the value 33.8 to field 22 ("bid"):

contrib(r, " myric~,{6,22},{33.5,33.8})

See Also

addric | fetch | reuters | deleteric

5-249

5 Functions — Alphabetical List
P

deleteric

Delete Reuters Instrument Code

Syntax

deleteric(r,ric)
deleteric(r,ric,fid)

Description

deleteric(r,ric) deletes the Reuters Instrument Code, ric, and all associated fields.
r is the Reuters session object.

deleteric(r,ric, fid) deletes the fields specified by Fid for the ric.

Examples

Delete "myric” and all of its fields:

deleteric(r, "myric")

Delete the fields "fid1l" and "fid2" from "myric":
deleteric(r,"myric",{"fidl", "fid2"})

See Also

addric | fetch | reuters | contrib

5-250

fetch

fetch

Request data from Reuters data servers

Syntax

d fetch(c,sec)
d = fetch(c,sec,[],fields)
subs = fetch(c,sec,eventhandler)

Description

d = fetch(c,sec) returns the current data for the security sec, given the Reuters
session object C.

d = fetch(c,sec,[1,fields) requests the given fields Fields, for the security sec,
given the Reuters session object C.

subs = fetch(c,sec,eventhandler) uses the Reuters session object C to subscribe
to the security sec. MATLAB runs the eventhandler function for each data event that
occurs.

Examples

Retrieve Current Securities Data

Connect to Thomson Reuters.

c = reuters("myNS: :remotesession”, "dIDN_RDF");
Jan 13, 2014 2:23:09 PM com.reuters.rfa.internal.connection.md.MDConnectionlmpl initializeEntitlements

INFO: com.reuters.rfa.connection.ssl.myNS.RemoteConnection
DACS disabled for connection myNS::RemoteConnection

The output message specifies a successful connection to the Reuters Market Data
System.

5-251

5 Functions — Alphabetical List
P

5-252

Retrieve the current data for the Google security using the Reuters session object C.
sec = "G0O0G.0";

d

fetch(c,sec)
d =
PROD_PERM: 74.00

RDNDISPLAY: 66.00
DSPLY_NAME: "DELAYED-15GOOGLE*

d contains a large number of Thomson Reuters market data fields. This output shows
the product permissions information, PROD_PERM, the display information for the IDN
terminal device, RONDISPLAY, and the expanded name for the instrument, DSPLY_NAME.

Close the Thomson Reuters connection.

close(c)
Request Specific Fields

Connect to Thomson Reuters.

c = reuters("myNS: :remotesession”, "dIDN_RDF");
Jan 13, 2014 2:23:09 PM com.reuters.rfa.internal.connection.md.MDConnectionlmpl initializeEntitlements

INFO: com.reuters.rfa.connection.ssl.myNS.RemoteConnection
DACS disabled for connection myNS::RemoteConnection

The output specifies a successful connection to the Reuters Market Data System.

Request the product permissions information "PROD_PERM® for the Google security from
Reuters.

sec = "G0O0G.0";
field = "PROD_PERM";

d

fetch(c,sec,[],field)
d =

PROD_PERM: 74

fetch

Request the product permissions information "PROD_PERM® and the display information
for the IDN terminal device "RDNDISPLAY " for the Google security from Reuters. Use a
cell array to input these two fields to the function.

sec = "G00G.0";
fields = {"PROD_PERM","RDNDISPLAY"};

d fetch(c,sec,[],fields)

d =

PROD_PERM: 74
RDNDISPLAY: 66

Close the Thomson Reuters connection.

close(c)
Subscribe to a Security

To subscribe to a security and process the data in real time, specify an event handler
function. MATLAB runs this function each time it receives a real-time data event from
Reuters.

Connect to Thomson Reuters.

c = reuters("myNS: :remotesession”, "dIDN_RDF");
Jan 13, 2014 2:23:09 PM com.reuters.rfa.internal.connection.md._MDConnectionlmpl initializeEntitlements

INFO: com.reuters.rfa.connection.ssl._myNS.RemoteConnection
DACS disabled for connection myNS::RemoteConnection

The output specifies a successful connection to the Reuters Market Data System.

The event handler rtdemo function returns the real-time Reuters data for the Google
security to the MATLAB workspace variable A. openvar displays A in the Variables
editor.

sec = "GO0G.0";
eventhandler = "rtdemo”;

subs = fetch(c,sec,eventhandler);
openvar("A")

5-253

5 Functions — Alphabetical List

.;U'ar-iabEﬁ - A

VARIABLE WVIEW
EEEI Opan w | Rows Columns I:|::||:|:'|:. .% . Transpose
New from Print - i—||—"| InsertField DeleteField | sont =
i b
VARIABLE | SELECTION | EDIT [

D | A X

[E] 15 struct with 13 fields

Field = Value Class
(H eiD 1.1324e+03 double
HH ask 11325e+03 double
HH BIDSIZE 2 double
H asksizE 1 double
2o BID_MMIDL ‘MAS char
2od ASK_MMID1 'BAT" char
- PRC_QL_CD 0 char
lsvd] GVI_TEXT A char
s QUOTIM 19:16:51" char
e PRC_QL3 o char
HH quoTiM_Mms 69411628 double
E ItemMame 'GO0G.0O" char
El ServiceMame 'dIDN_RDF' char

In this instance, the fields represent a bid or ask tick.

The fetch function returns the subscription handle associated with this request in the
variable subs. Display the subscription handle contents.

subs

subs =

5-254

fetch

com.reuters.rfa.internal .common.SubHandlelmpl[]:
[com.reuters.rfa.internal _.common.SubHandlelmpl]

Stop the real-time subscription.
stop(c,subs)
Close the Thomson Reuters connection.

close(c)

Input Arguments

c — Reuters session
object

Reuters session, specified as a Reuters session object created using reuters.

sec — Security list

string | cell array

Security list, specified as a string or a cell array of strings to denote Reuters securities.
Data Types: char | cell

fields — Reuters fields list
string | cell array

Reuters fields list, specified as a string or cell array of strings to denote Reuters field
names.
Data Types: char | cell

eventhandler — Reuters real-time event handler
function

Reuters real-time event handler, specified as a MATLAB function that runs for each
data event that occurs. The sample event handler called rtdemo.m returns Reuters real-
time data from the Reuters Market Data System to the MATLAB workspace. The sample
event handler specifies these input arguments.

5-255

5 Functions — Alphabetical List
P

Event Handler Input Argument Description

X Return data structure
itemName Reuters data name
serviceName Reuters service name

The sample event handler writes variable A to the Workspace browser with the contents
of .

Data Types: function_handle

Output Arguments

d — Reuters request data
structure

Reuters request data, returned as a structure. The structure contains many Reuters data
fields. For details, see Reuters Data Support.

subs — Reuters subscription handle
object

Reuters subscription handle, returned as a Reuters subscription object.

More About

. “Writing and Running Custom Event Handler Functions” on page 1-22

See Also

close | reuters | stop

5-256

https://customers.reuters.com/home/data_support.aspx

get

get

Retrieve properties of Reuters session objects

Syntax

e = get(r)
e = get(r,H)

Arguments

r Reuters session object created with reuters.
Reuters session properties list.

Description

e = get(r) returns Reuters session properties for the Reuters session object r.

e = get(r,T) returns Reuters session properties specified by the properties list F for
the Reuters session object r.

See Also

reuters

5-257

5 Functions — Alphabetical List
P

5-258

history

Request data from Reuters Time Series One

Syntax

history(r,s)

history(r,s,p)

history(r,s,T)

history(r,s,T,p)

history(r,s,d)
history(r,s,startdate,enddate)
history(r,s,startdate,enddate, p)
history(r,s,f,startdate,enddate)
history(r,s,f,startdate,enddate,p)

OO0 0000000
L 1 T 1 A B VO |

Description

d = history(r,s) returns all available daily historical data for the RIC, s, for the
Reuters session object r.

d = history(r,s,p) returns all available historical data for the RIC, s, for the
Reuters session object r. p specifies the period of the data:

"d" - daily (default)

w" - weekly

m® - monthly

Note: Reuters Time Series One will only return two years of daily data, five years of
weekly data, or ten years of monthly data from the current date.

d = history(r,s,T) returns all available historical data for the RIC, s, and fields, T,
for the Reuters session object r.

d = history(r,s,T,p) returns all available historical data for the RIC, s, and fields,
T, for the Reuters session object r. p specifies the period of the data.

history

d = history(r,s,d) returns the historical data for the RIC, s, for the given date, d,
for the Reuters session object r.

d = history(r,s,startdate,enddate) returns the daily historical data for the RIC,
s, for the given date range defined by startdate and enddate.

d = history(r,s,startdate,enddate,p) returns the daily historical data for the
RIC, s, for the given date range defined by startdate and enddate. p specifies the
period of the data.

d = history(r,s, f,startdate, enddate) returns the daily historical data for the
RIC, s, for the given date range defined by startdate and enddate.

d = history(r,s, f,startdate,enddate,p) returns the historical data for the RIC,
s, and fields, T, for the given date range defined by startdate and enddate. p specifies
the period of the data.

Examples

d = history(r, "WXYZ.0") returns a structure containing all available historical end
of day daily data for the RIC "WXYZ.0", for the Reuters session object r.

d = history(r,"WXYZ.0", "close") returns a structure with the fields date and
close containing all available historical end of day daily data for the RIC "WXYZ.0".

d = history(r,"WXYZ.0","close”, "m") returns all available monthly data.

d = history(r, "WXYZ.0","01-03-2009", "02-24-2009") returns all available
daily data for the date range 01-03-2009 to 02-24-2009. Note that only two years worth
of daily data, five years worth of weekly data, and 10 years of monthly data from today's
date is made available by Reuters.

d = history(r, "WXYZ.0",{"close", "volume"}, "01-03-2009", "02-24-2009%)
returns all available daily data for the date range 01-03-2009 to 02-24-2009 for the fields
date, close and volume.

d = history(r, "WXYZ.0",

{"close", "volume"}, "01-03-2009", "02-24-2009", "w") returns all available
weekly data for the date range 01-03-2009 to 02-24-2009 for the fields date, close and
volume.

5-259

5 Functions — Alphabetical List
P

See Also

reuters | fetch

5-260

stop

stop

Unsubscribe securities

Syntax

stop(r)

stop(r,d)

Arguments

r Reuters session object created with reuters.
Subscription handle returned by Fetch.

Description

stop(r) unsubscribes all securities associated with the Reuters session object r.

stop(r,d) unsubscribes the securities associated with the subscription handle d, where
d is the subscription handle returned by reuters/fetch.

Examples

Unsubscribe securities associated with a specific request d and a Reuters connection
object r:

stop(r,d)
Unsubscribe all securities associated with the Reuters connection object r:

stop(r)

See Also

reuters | fetch

5-261

5 Functions — Alphabetical List
P

rmdsconfig

Reuters Market Data System (RMDS) configuration editor

Syntax

rmdsconfig

Description

rmdsconfig opens the Reuters Market Data System configuration editor.

See Also

reuters

5-262

treikon

treikon

Thomson Reuters Eikon connection

Syntax

c = treikon

c = treikon(source)

c = treikon(source, filepath)
Description

c = treikon creates a connection to Thomson Reuters Eikon using the default data
source and Thomson Reuters Eikon installation path.

c = treikon(source) creates a connection to Thomson Reuters Eikon using the data
source source and default Thomson Reuters Eikon installation path.

c = treikon(source, filepath) creates a connection to Thomson Reuters Eikon
using the data source source and the installation file path i lepath.

Examples

Connect to Thomson Reuters Eikon

Create a Thomson Reuters Eikon connection ¢ with the default data source " IDN" and
installation file path. Use the event handler function trestatuseventhandler in the
API method add_OnStatusChanged to return the connection status to the Command
Window. This status displays whenever the state of the connection changes. You can
modify this event handler or create your own to add other functionality.

= treikon
.DataAPIClass.add_OnStatusChanged(@trestatuseventhandler)
.DataAPIClass.Status

.DataAPIClass. Initialize

.Source = "IDN";

O0O00O0

(e}

5-263

5 Functions — Alphabetical List
P

5-264

treikon with properties:
Assembly: {1x6 cell}
DataAPIClass: [1x1 EikonDesktopDataAPl .EikonDesktopDataAPIClass]
Source: "IDN*®

ans =

Disconnected

ans =

Succeed

ans =

Connected

MATLAB connects to Thomson Reuters Eikon when the Command Window displays this
message: Connected.

To close the Thomson Reuters Eikon connection, exit MATLAB.
Connect to Thomson Reuters Eikon with a Data Source

Create a Thomson Reuters Eikon connection ¢ with the data source " IDN" and the
default installation file path. Use the event handler function trestatuseventhandler
in the API method add_OnStatusChanged to return the connection status to the
Command Window. This status displays whenever the state of the connection changes.
You can modify this event handler or create your own to add other functionality.

c = treikon("IDN™)
c.DataAPIClass.add_OnStatusChanged(@trestatuseventhandler)
c.DataAPIClass.Status

c.DataAPIClass. Initialize

Cc =
treikon with properties:
Assembly: {1x6 cell}

DataAPIClass: [1x1 EikonDesktopDataAPl .EikonDesktopDataAPIClass]
Source: "IDN*®

treikon

ans =
Disconnected
ans =
Succeed

ans =
Connected

MATLAB connects to Thomson Reuters Eikon when the Command Window displays this
message: Connected.

To close the Thomson Reuters Eikon connection, exit MATLAB.
Connect to Thomson Reuters Eikon with a Data Source and File Path

Create a Thomson Reuters Eikon connection ¢ with the data source " IDN" and the
installation file path "c:\Program Files (x86)\Thomson Reuters\Eikon
\4.0.10490\Bin". Use the event handler function trestatuseventhandler in the
API method add_OnStatusChanged to return the connection status to the Command
Window. This status displays whenever the state of the connection changes. You can
modify this event handler or create your own to add other functionality.
c = treikon("IDN", ...

"c:\Program Files (x86)\Thomson Reuters\Eikon\4.0.10490\Bin")
c.DataAPIClass.add_OnStatusChanged(@trestatuseventhandler)

c.DataAPIClass.Status
c.DataAPIClass. Initialize

CcC =
treikon with properties:
Assembly: {1x6 cell}
DataAPIClass: [1x1 EikonDesktopDataAPl .EikonDesktopDataAPIClass]
Source: "IDN*®
ans =

Disconnected

ans =

5-265

5 Functions — Alphabetical List
P

Succeed
ans =
Connected

MATLAB connects to Thomson Reuters Eikon when the Command Window displays this
message: Connected.

To close the Thomson Reuters Eikon connection, exit MATLAB.

Input Arguments

source — Data source
string

Data source, specified as a string to denote the Thomson Reuters Eikon data source. You
can configure the data source in the Thomson Reuters Eikon Desktop.

Data Types: char

filepath — File path

string

File path, specified as a string to denote the installation file path for loading the
Thomson Reuters Eikon Microsoft .NET Framework DLLs.

Data Types: char

Output Arguments

¢ — Thomson Reuters Eikon connection
connection object

Thomson Reuters Eikon connection, returned as a connection object with these

properties.

Property Description

Assembly Cell array of Microsoft .NET Framework
assemblies loaded in MATLAB

5-266

treikon

Property Description

DataAPIClass Thomson Reuters Eikon
EikonDesktopDataAPI object

Source Thomson Reuters Eikon data source

More About

Tips
* For details about the Thomson Reuters Eikon Desktop Data API, see Thomson
Reuters Eikon Help.

. “Workflow for Thomson Reuters Eikon”
. “Writing and Running Custom Event Handler Functions” on page 1-22
See Also

getdata | history | realtime | start | stop

5-267

5 Functions — Alphabetical List
P

5-268

getdata

Retrieve current market data from Thomson Reuters Eikon

Syntax

d = getdata(c,s,fields)

Description

d = getdata(c,s, fields) returns the current market data from Thomson Reuters
Eikon given the connection c, security list s, and fields list Fields.

Examples

Retrieve Data for One Field

To retrieve current data, create the connection ¢ using treikon. For an example
showing this activity, see “Retrieve Thomson Reuters Eikon Current Data”.

Retrieve last price data for Google.

s = "G00G.0";
field = "LAST"; % Last price field

d = getdata(c,s,field)

ans =
RT_LIST_INACTIVE
ans =
RT_LIST_RUNNING
d =

LAST: {[1119.58]}

getdata

ans =
GO0G.0
Thomson Reuters Eikon provides status messages to the Command Window.

RT_LIST_INACTIVE means no real-time data is being requested and RT_LIST_RUNNING
means real-time data is updating.

getdata returns d as a structure containing the field LAST for the last price. This field
value contains the returned last price of $1119.58 for Google.

After returning the output structure, Thomson Reuters Eikon returns the contents of the
security list GOOG. 0.

To close the Thomson Reuters Eikon connection, exit MATLAB.
Retrieve Data for Multiple Fields

To retrieve current data for multiple fields, create the connection ¢ using treikon. For
an example showing this activity, see “Retrieve Thomson Reuters Eikon Current Data”.

Retrieve last price and bid price data for Google.

s = "G00G.0";
fields = {"LAST","BID"}; % Last price and bid price fields

d = getdata(c,s,fields)
ans =

GO0G.0

d =

LAST: {[1119.77]}
BID: {[1119.41]}

getdata returns d as a structure containing the field LAST with the last price $1119.77
and the field BID with the bid price $1119.41 for Google.

To close the Thomson Reuters Eikon connection, exit MATLAB.

. “Retrieve Thomson Reuters Eikon Current Data”

5-269

5 Functions — Alphabetical List
P

5-270

Input Arguments

¢ — Thomson Reuters Eikon connection
connection object

Thomson Reuters Eikon connection, specified as a connection object created using
treikon.

s — Security list
string | cell array

Security list, specified as a string for one security or a cell array for multiple securities.

Data Types: char | cell

fields — Requested fields list

string | cell array

Requested fields list, specified as a string for one field or a cell array for multiple fields.

Data Types: char | cell

Output Arguments

d — Return data
structure

Return data, returned as a structure containing fields with Thomson Reuters Eikon
current market data.

More About
Tips

* For details about the Thomson Reuters Eikon Desktop Data API, see Thomson
Reuters Eikon Help.

. “Workflow for Thomson Reuters Eikon”

getdata

See Also

history | realtime | treikon

5-271

5 Functions — Alphabetical List
P

5-272

history

Retrieve historical data from Thomson Reuters Eikon

Syntax

d = history(c,s,fields)

d = history(c,s, fields,startdate,enddate)

d = history(c,s,fields,startdate,enddate,period)

Description

d = history(c,s, fields) returns historical data for a default date range for the
securities s and the fields Fields given the Thomson Reuters Eikon connection object c.

d = history(c,s,fields,startdate,enddate) returns historical data for a date
range beginning with startdate and ending with enddate.

d = history(c,s, fields,startdate,enddate,period) returns historical data
for a date range beginning with startdate, ending with enddate, and using periodicity
period.

Examples

Retrieve Historical Data

To retrieve historical data, create the connection ¢ using treikon. For an example
showing this activity, see “Retrieve Thomson Reuters Eikon Historical Data”.

Retrieve the daily open, high, low, and close prices for Apple.

s = "AAPL.O";
fields = {"DATE","OPEN", "HIGH", "LOW", "CLOSE"};

d = history(c,s,fields)

d =

history

*4/7/2014 12:00:0..." [528.02] [530.90]
*4/4/2014 12:00:0..." [539.81] [540.00]

*4/3/2014 12:00:0..." [541.39] [542.50]

d is a cell array that contains five columns:

Date and time
Open price
High price
Low price

Close price

Each row represents one day of data.

[521.89] [523.47]
[530.58] [531.82]
[537.64] [538.79]

To close the Thomson Reuters Eikon connection, exit MATLAB.

Retrieve Historical Data with a Date Range

To retrieve historical data with a date range, create the connection ¢ using treikon. For
an example showing this activity, see “Retrieve Thomson Reuters Eikon Historical Data”.

Retrieve the daily open, high, low, and close prices for Apple. Retrieve data for the last 30
days.

s = "AAPL.O";
fields = {"DATE","OPEN", "HIGH", "LOW", "CLOSE"};
startdate = floor(now)-30; % Beginning of date range as of 30 days ago

enddate = floor(now); % End of date range as of today

d
d

history(c,s, fields,startdate,enddate)

4/8/2014 12:00:0..." [525.19] [526.12]
*4/7/2014 12:00:0..." [528.02] [530.90]

*4/4/2014 12:00:0..." [539.81] [540.00]

is a cell array that contains five columns:

Date and time
Open price
High price

Low price

[518.70] [523.44]
[521.89] [523.47]
[530.58] [531.82]

5-273

5 Functions — Alphabetical List
P

5-274

* Close price

Each row represents one day of data. The total number of rows equals the number of
trading days in the last month.

To close the Thomson Reuters Eikon connection, exit MATLAB.
Retrieve Historical Data with a Periodicity

To retrieve historical data with a date range and periodicity, create the connection c
using treikon. For an example showing this activity, see “Retrieve Thomson Reuters
Eikon Historical Data”.

Retrieve the weekly open, high, low, and close prices for Apple. Retrieve data for the last
30 days.

s = "AAPL.O";

fields = {"DATE","OPEN", "HIGH", "LOW", "CLOSE"};

startdate = floor(now)-30; % Beginning of date range as of 30 days ago
enddate = floor(now); % End of date range as of today

period = *"W"; % Weekly periodicity

d = history(c,s,fields,startdate,enddate,period)

d =
*4/4/2014 12:00:0..." [539.23] [543.48] [530.58] [531.82]
*3/28/2014 12:00:..." [538.42] [549.00] [534.25] [536.86]
*3/21/2014 12:00:..." [527.70] [536.24] [525.20] [532.87]
*3/14/2014 12:00:..." [528.36] [539.66] [523.00] [524.69]

d is a cell array that contains five columns:
* Date and time

* Open price

+ High price

* Low price

* Close price

Each row represents one week of data. The total number of rows equals the number of
weeks in the requested date range.

To close the Thomson Reuters Eikon connection, exit MATLAB.

. “Retrieve Thomson Reuters Eikon Historical Data”

history

Input Arguments

¢ — Thomson Reuters Eikon connection
connection object

Thomson Reuters Eikon connection, specified as a connection object created using
treikon.

s — Security list
string | cell array
Security list, specified as a string for one security or a cell array for multiple securities.

Data Types: char | cell

fields — Requested fields list

string | cell array

Requested fields list, specified as a string for one field or a cell array for multiple fields.
Data Types: char | cell

startdate — Start date
scalar | string

Start date, specified as a scalar or string to denote the beginning of the date range to
return historical data.
Example: floor(now)-30

Data Types: double | char

enddate — End date
scalar | string

End date, specified as a scalar or string to denote the end of the date range to return
historical data.

Example: floor (now)

Data Types: double | char

period — Periodicity
D" (default) | *W* | "M"

5-275

5 Functions — Alphabetical List
P

5-276

Periodicity, specified as one of these enumerated strings to denote the frequency of the
returned historical data.

Enumerated String Description
" Daily
wE Weekly
"M Monthly

Data Types: char

Output Arguments

d — Return data
cell array

Return data, returned as a cell array containing Thomson Reuters Eikon historical data.

More About
Tips

* For details about the Thomson Reuters Eikon Desktop Data API, see Thomson
Reuters Eikon Help.

. “Workflow for Thomson Reuters Eikon”

See Also

getdata | realtime | treikon

realtime

realtime

Retrieve real-time data from Thomson Reuters Eikon

Syntax

subs = realtime(c,s,fields,eventhandler)

Description

subs = realtime(c,s,fields,eventhandler) subscribes to a security s and
asynchronously returns data for the request fields Fields using the event handler
eventhandler to process Thomson Reuters Eikon data events.

Examples

Retrieve Real-Time Data for One Security

To retrieve real-time data, create the connection ¢ using treikon. For an example
showing this activity, see “Retrieve Thomson Reuters Eikon Real-Time Data”.

Retrieve real-time data for the last price and bid price for Google. The sample event
handler trerealtimeeventhandler retrieves the real-time data to put into the
MATLAB variable trRealtimeData in the Workspace browser.

S = "G00G.0";
fields = {"LAST","BID"};

subs = realtime(c,s,fields, ...
@(varargin)trerealtimeeventhandler(varargin{:}))

subs

AdXRtListCOMObj: [1x1 System.__ComObject]
AdxRtListObj: [1x1 ThomsonReuters. Interop.RTX.AdxRtListClass]
Items: {"GOOG.0"}
Fields: {"LAST" "BID"}
UpdateMode: [1x1 ThomsonReuters.Interop.RTX.RT_RunMode]

5-277

5 Functions — Alphabetical List
P

5-278

subs is a subscription structure that contains the security list in the structure field
Items. subs contains the Thomson Reuters Eikon field list in the structure field
Fields.

Display the real-time data for Google by accessing the contents of the variable
trRealtimeData in the Workspace browser.

trRealtimeData

trRealtimeData =

RIC: "GO0OG.O*
LAST: 561.26
BID: 561.16

The variable trRealtimeData is a structure that contains real-time data.
trRealtimeData contains the Thomson Reuters Eikon Reuters Instrument Code (RIC)
in the structure field RIC. This structure contains any requested Thomson Reuters
Eikon fields as structure fields. For example, trRealtimeData contains the last price of
$561.26 for Google in the structure field LAST.

To close the Thomson Reuters Eikon connection, exit MATLAB.
Retrieve Real-Time Data for Multiple Securities

To retrieve real-time data, create the connection ¢ using treikon. For an example
showing this activity, see “Retrieve Thomson Reuters Eikon Real-Time Data”.

Retrieve real-time data for last price for Google and Microsoft. The sample event handler
trerealtimeeventhandler retrieves the real-time data to put into the MATLAB
variable trRealtimeData in the Workspace browser.

s = {"G00G.0", "MSFT.0"};
fields = "LAST";

subs = realtime(c,s,fields, ...
@(varargin)trerealtimeeventhandler(varargin{:}))

subs

AdXRtListCOMObj: [1x1 System.__ComObject]
AdxRtListObj: [1x1 ThomsonReuters. Interop.RTX.AdxRtListClass]
Items: {"GOOG.0" “MSFT.O"}
Fields: {"LAST"}

realtime

UpdateMode: [1x1 ThomsonReuters.Interop.RTX.RT_RunMode]

subs is a subscription structure that contains the security list in the structure field
Items. subs contains the Thomson Reuters Eikon field list in the structure field
Fields.

If the security list contains multiple securities, the sample event handler
trerealtimeeventhandler retrieves real-time data for the security with the latest
event. The first event occurs for Google. Display the real-time data for Google by
accessing the contents of the variable trRealtimeData in the Workspace browser.

trRealtimeData

trRealtimeData =

RIC: "G0O0G.O*
LAST: 564.09

The variable trRealtimeData is a structure that contains real-time data.
trRealtimeData contains the Thomson Reuters Eikon RIC in the structure field RIC.
This structure contains any requested Thomson Reuters Eikon fields as structure fields.
For example, trRealtimeData contains the last price of $564.09 for Google in the
structure field LAST.

The next event occurs for Microsoft and the variable trReal timeData reflects the last
price. Display the real-time data for Microsoft by accessing the contents of the variable
trRealtimeData in the Workspace browser.

trRealtimeData

trRealtimeData =

RIC: "MSFT.O*
LAST: 40.55

To close the Thomson Reuters Eikon connection, exit MATLAB.

. “Retrieve Thomson Reuters Eikon Real-Time Data”

Input Arguments

c — Thomson Reuters Eikon connection
connection object

5-279

5 Functions — Alphabetical List
P

5-280

Thomson Reuters Eikon connection, specified as a connection object created using
treikon.

s — Security list

string | cell array

Security list, specified as a string for one security or a cell array for multiple securities.
Data Types: char | cell

fields — Requested fields list

string | cell array

Requested fields list, specified as a string for one field or a cell array for multiple fields.
Data Types: char | cell

eventhandler — Event handler
function

Event handler, specified as a function to process Thomson Reuters Eikon data. You

can modify the existing event handler function trerealtimeeventhandler or

define your own function to process any real-time Thomson Reuters Eikon events.
trerealtimeeventhandler retrieves real-time data to put into the MATLAB variable
trRealtimeData in the Workspace browser.

Data Types: function_handle

Output Arguments

subs — Thomson Reuters Eikon subscription list
structure

Thomson Reuters Eikon subscription list, returned as a structure containing these fields.

Field Description

AdXRtListCOMObj Thomson Reuters Eikon Desktop Data API
COM object

AdxRtListObj Thomson Reuters Eikon Desktop Data API
list object

realtime

Field Description

Items Thomson Reuters Eikon Reuters
Instrument Code (RIC) list specified by the
input argument s

Fields Thomson Reuters Eikon fields list specified
by the input argument fields
UpdateMode Thomson Reuters Eikon Desktop Data API

real-time data update mode

More About
Tips

* For details about the Thomson Reuters Eikon Desktop Data API, see Thomson
Reuters Eikon Help.

. “Workflow for Thomson Reuters Eikon”

. “Writing and Running Custom Event Handler Functions” on page 1-22

See Also

getdata | history | start | stop | treikon

5-281

5 Functions — Alphabetical List
P

5-282

start

Start Thomson Reuters Eikon real-time data retrieval

Syntax

start(c,subs)

Description

start(c,subs) starts real-time data retrieval using the Thomson Reuters Eikon
connection c. start starts real-time data retrieval for the securities specified in the
Thomson Reuters Eikon real-time subscription list subs.

Examples

Start Real-Time Data Retrieval

To start retrieving real-time data, create the connection c using treikon. Retrieve
real-time data using realtime. For an example showing these activities, see “Retrieve
Thomson Reuters Eikon Real-Time Data”.

After stopping real-time data updates, resume real-time data updates using Thomson
Reuters Eikon connection ¢ and Thomson Reuters Eikon subscription list subs.

start(c,subs)
To close the Thomson Reuters Eikon connection, exit MATLAB.

. “Retrieve Thomson Reuters Eikon Real-Time Data”

Input Arguments

¢ — Thomson Reuters Eikon connection
connection object

start

Thomson Reuters Eikon connection, specified as a connection object created using
treikon.

subs — Thomson Reuters Eikon subscription list
structure

Thomson Reuters Eikon subscription list, specified as a structure created using
realtime.

More About
Tips

* For details about the Thomson Reuters Eikon Desktop Data API, see Thomson
Reuters Eikon Help.

. “Workflow for Thomson Reuters Eikon”

See Also

realtime | stop | treikon

5-283

5 Functions — Alphabetical List
P

5-284

stop

Stop Thomson Reuters Eikon real-time data retrieval

Syntax

stop(c,subs)

Description

stop(c,subs) stops real-time data retrieval using the Thomson Reuters Eikon
connection c. stop stops real-time data retrieval for the securities specified in the
Thomson Reuters Eikon real-time subscription list subs.

Examples

Stop Real-Time Data Retrieval

To stop retrieving real-time data, create the connection ¢ using treikon. Retrieve
real-time data using realtime. For an example showing these activities, see “Retrieve
Thomson Reuters Eikon Real-Time Data”.

After retrieving real-time data, stop real-time data updates using Thomson Reuters
Eikon connection ¢ and Thomson Reuters Eikon subscription list subs.

stop(c,subs)
To close the Thomson Reuters Eikon connection, exit MATLAB.

. “Retrieve Thomson Reuters Eikon Real-Time Data”

Input Arguments

¢ — Thomson Reuters Eikon connection
connection object

stop

Thomson Reuters Eikon connection, specified as a connection object created using
treikon.

subs — Thomson Reuters Eikon subscription list
structure

Thomson Reuters Eikon subscription list, specified as a structure created using
realtime.

More About
Tips

* For details about the Thomson Reuters Eikon Desktop Data API, see Thomson
Reuters Eikon Help.

. “Workflow for Thomson Reuters Eikon”

See Also

realtime | start | treikon

5-285

5 Functions — Alphabetical List
P

chain

Retrieve chain data from Thomson Reuters Eikon

Syntax

d = chain(c,s)

Description

d = chain(c,s) retrieves chain data for security s using the Thomson Reuters Eikon
connection C.

Examples

Retrieve Chain Data

Create a Thomson Reuters Eikon connection c.

= treikon;
-DataAPIClass.add_OnStatusChanged(@trestatuseventhandler)
-DataAPIClass.Status

_DataAPIClass.Initialize

.Source = "IDN";

O000O0

ans =
Disconnected
ans =
Succeed

ans =
Connected

MATLAB connects to Thomson Reuters Eikon when the Command Window displays this
message: Connected.

5-286

chain

Retrieve chain data for the UK Pound Sterling/US Dollar FX Spot Rate.
s = "GBP=";

d = chain(c,s)

" GBPCONTINFO"
"GBP="
" GBP=FXBP"

chain returns d as a cell array containing the list of instrument names.

To close the Thomson Reuters Eikon connection, exit MATLAB.

. “Retrieve Thomson Reuters Eikon Current Data”

Input Arguments

¢ — Thomson Reuters Eikon connection
connection object

Thomson Reuters Eikon connection, specified as a connection object created using
treikon.

s — Security list
string | cell array

Security list, specified as a string for one security or a cell array for multiple securities.

Data Types: char | cell

Output Arguments

d — Return data
cell array

Return data, returned as a cell array containing a list of instrument names.

5-287

5 Functions — Alphabetical List
P

More About

“Workflow for Thomson Reuters Eikon”

5-288

rnseloader

rnseloader

Retrieve data from Reuters Newscope sentiment archive file

Syntax

= rnseloader(file)
rnseloader(file,
rnseloader(file,
rnseloader(file,
rnseloader(file,
rnseloader(file,
= rnseloader(file,

X X X X X X X
1

Arguments

"date”, {DATE1l})
"date”, {DATE1l, DATE2})
"security”, {SECNAME})
"start®, STARTREC)
"records”, NUMRECORDS)
"fieldnames™, F)

Specify the following arguments as name-value pairs. You can specify any combination of
name-value pairs in a single call to rnseloader.

Reuters Newscope sentiment archive file from which to
retrieve data.

Use this argument with {DATE1, DATE2} to retrieve data
between and including the specified dates. Specify the dates
as numbers or strings.

"security”

Use this argument to retrieve data for SECNAME, where
SECNAME is a cell array containing a list of security
identifiers for which to retrieve data.

“start”

Use this argument to retrieve data beginning with the
record STARTREC, where STARTREC is the record at which
rnseloader begins to retrieve data. Specify STARTREC as a
number.

"records”

Use this argument to retrieve NUMRECORDS number of
records.

5-289

5 Functions — Alphabetical List
P

5-290

Description

X = rnseloader(Ffile) retrieves data from the Reuters Newscope sentiment archive
file File, and stores it in the structure X.

X = rnseloader(file, "date”, {DATELl}) retrieves data from File with date
stamps of value DATEL.

x = rnseloader(file, "date”, {DATE1l, DATE2}) retrieves data from File with
date stamps between DATE1 and DATEZ2.

X = rnseloader(Ffile, "security”, {SECNAME}) retrieves data from File for the
securities specified by SECNAME.

x = rnseloader(file, "start®, STARTREC) retrieves data from file beginning
with the record specified by STARTREC.

X = rnseloader(file, "records®, NUMRECORDS) retrieves NUMRECORDS number
of records from File.

x = rnseloader(file, "fieldnames”, F) retrieves only the specified fields, F, in
the output structure.

Examples

Retrieve data from the file "File.csv" with date stamps of "02/02/2007 ":

x = rnseloader("file.csv", "date”,{"02/02/2007"})

Retrieve data from "Ffile.csv" between and including "02/02/2007" and
"02/03/2007":

x = rnseloader("file.csv", "date”,{"02/02/2007", . ..
"02/03/2007"})

Retrieve data from "Ffile.csv" for the security "XYZ_.0":
X = rnseloader("file.csv™, "security”,{"XYZ.0"})
Retrieve the first 10000 records from "file.csv":

x = rnseloader("file.csv", "records”,10000)

rnseloader

Retrieve data from "Ffile.csv", starting at record 100000:

X = rnseloader("file.csv", "start”,100000)

Retrieve up to 100000 records from "File.csv", for the securities "ABC_N" and

"XYZ.0", with date stamps between and including the dates "02/02/2007" and
"02/03/2007":

X = rnseloader("file.csv", "records”, 100000, ...
"date",{"02/02/2007","02/03/2007"}, - ..
"security”,{"ABC_N","XYZ.0"})

See Also

reuters | rdthloader

5-291

5 Functions — Alphabetical List
P

tlkrs

SIX Financial Information connection

Syntax

T = thkrs(Cl1,Ul ,password)

Description
T = thkrs(Cl,Ul,password) makes a connection to the SIX Financial Information

data service given the Customer ID (Cl), User ID (Ul), and password (password)
provided by SIX Financial Information.

See Also

close | history | getdata | timeseries

5-292

close

close

Close connection to SIX Financial Information

Syntax

close(C)

Description

close(C) closes the connection, C, to SIX Financial Information.

See Also
tlkrs

5-293

5 Functions — Alphabetical List
P

5-294

getdata

Current SIX Financial Information data

Syntax

D = getdata(c,s,f)

Description

D = getdata(c,s,T) returns the data for the fields F for the security list s.

Examples

Retrieve SIX Financial Information pricing data for specified securities.

% Connect to Telekurs.
c = tlkrs("US12345", "userapidOl”, "userapidl0™)

% Convert specified fields to ID strings.
ids = tkfieldtoid(c,{"Bid", "Ask","Last"}, "market™);

% Retrieve data for specified securities.
d = getdata(c,{"1758999,149,134","275027,148,184"}, ids);

Your output appears as follows:

d =
XRF: [1x1 struct]
IL: [1x1 struct]
1: [1x1 struct]
M: [1x1 struct]
P: [1x1 struct]

d. I contains the instrument IDs, and d.P contains the pricing data.

View the instrument IDs like this:

d. 1.k

getdata

ans =
"1758999,149,134"
"275027,148,184*

View the pricing data field IDs like this:
d.P.k

ans =

"33,2,1"
"33,3,1"
"3,1,1"
"33,2,1"
"33,3,1"
"3,1,1"

And the pricing data like this:

"44.94"
"44.95"
0
*0.9715"
"0.9717"
0

Convert field IDs in d.P .k to field names like this:

d.P_.k = tkidtofield(c,d.P.k, "market")

Load the file @tlkrs/tkfields._mat for a listing of the field names (Bid, Ask, Last)

and corresponding IDs.

See Also

tlkrs | timeseries | tkidtofield | history | tkfieldtoid

5-295

5 Functions — Alphabetical List
P

history

End of day SIX Financial Information data

Syntax

D = history(c,s,f,fromdate, todate)

Description

D = history(c,s,f,fromdate, todate) returns the historical data for the security
list s, for the fields F, for the dates fromdate to todate.

Examples

Retrieve end of day SIX Financial Information data for the specified security for the past
5 days.
c = tlkrs("US12345", "userapidOl”, "userapidl0™)

ids = tkfieldtoid(c,{"Bid", "Ask"}, "history");
d = history(c,{"1758999,149,134"}, ids, floor(now)-5, floor(now));

d =

XRF: [1x1 struct]
IL: [1x1 struct]
1: [1x1 struct]
HL: [1x1 struct]
HD: [1x1 struct]
P: [1x1 struct]

d. 1 contains the instrument IDs, d .HD contains the dates, and d.P contains the pricing
data.

View the dates:

d.HD.d

ans =

5-296

history

"20110225*
"20110228*
"20110301"

View the pricing field IDs:

d.P.k

ans =

3. 2"
"3,3"
*3.2"
"3,3"
*3.2"
"3,3"

View the pricing data:

d.P.v

ans =

"45.
"45.
"45.
"45.
"44 .
"44 .

32"
33"
26"
27"
94"
95*°

Convert the field identification strings in d.P .k to their corresponding field names like

this:

d.P.k = tkidtofield(c,d.P._k, "history")

See Also

tlkrs | timeseries | tkidtofield | getdata | tkfieldtoid

5-297

5 Functions — Alphabetical List
P

isconnection

Determine if SIX Financial Information connection is valid

Syntax

X = isconnection(C)

Description

X = isconnection(C) returns true if C is a valid SIX Financial Information
connection and false otherwise.

See Also

tlkrs | close | getdata

5-298

timeseries

timeseries

SIX Financial Information intraday tick data

Syntax

D = timeseries(c,s,t)

D = timeseries(c,s,{startdate,enddate})
D = timeseries(c,s,t,5)

Description

D = timeseries(c,s,t) returns the raw tick data for the SIX Financial Information
connection object C, the security s, and the date t. Every trade, best, and ask tick is
returned for the given date or date range.

D = timeseries(c,s,{startdate,enddate}) returns the raw tick data for the
security s, for the date range defined by startdate and enddate.

D = timeseries(c,s,t,5) returns the tick data for the security s, for the date t
in intervals of 5 minutes, for the field . Intraday tick data requested is returned in 5-
minute intervals, with the columns representing:

* First
* High
* Low

* Last

* Volume weighted average

* Moving average

Examples

Retrieve SIX Financial Information intraday tick data for the past 2 days:

c = thlkrs("US12345", "userapid01”, "userapidl0™)

5-299

5 Functions — Alphabetical List
P

5-300

d = timeseries(c,{"1758999,149,134"},
{floor(now)-.25,floor(now)})

Display the returned data:
d =

XRF: [1x1 struct]
IL: [1x1 struct]
1: [1x1 struct]
TSL: [1x1 struct]
TS: [1x1 struct]
P: [1x1 struct]

d. I contains the instrument IDs, d. TS contains the date and time data, and d.P
contains the pricing data.

Display the tick times:
d.TS.t(1:10)
ans =

"013500"
"013505*
"013510"
"013520"
"013530"
"013540"
"013550"
"013600"
"013610"
"013620"

Display the field IDs:

d.P.k(1:10)
ans =

3.4
-3 0"
-3 3"
3.4
-3 0"

timeseries

*3,3"
*3,4"
*3,2"
*3,3"
*3,4"

Convert these IDs to field names (Mid, Bid, Ask) with tkidtofield:

d.P.k = tkidtofield(c,d.P.k, "history~)

Load the file @tlkrs/tkfields._.mat for a listing of the field names and corresponding

IDs.

Display the corresponding tick values:

d.P.v(1:

ans =

"45.
"45.
"45.
"45.
"45.
"45.
"45.
"45.
"45.
"45.

10)

325*°
32"
33"
325*°
32"
33"
325*°
32"
33"
325*°

See Also

tlkrs | history | getdata

5-301

5 Functions — Alphabetical List
P

5-302

tkfieldtoid

SIX Financial Information field names to identification string

Syntax

D = tkfieldtoid(c,f,typ)

Description

D = tkfieldtoid(c, f,typ) converts SIX Financial Information field names to their
corresponding identification strings. c is the SIX Financial Information connection
object, F is the field list, and typ denotes the field. Options for the field include market,
"market”; time and sales, "tass"; and history, "history". market fields are used
with getdata, tass fields are used with timeseries, and history fields are used with
history.

Examples

Retrieve pricing data associated with specified identification strings:

% Connect to SIX Telekurs.
c = thkrs("US12345", "userapid0l1”, "userapidl0™)

% Convert field names to identification strings.
ids = tkfieldtoid(c,{"bid","ask","last"}, "market");

% Retrieve data associated with the identification strings.
d = getdata(c,{"1758999,149,134","275027,148,184" ,ids);

See Also

tlkrs | history | tkidtofield | getdata | timeseries

tkidtofield

tkidtofield

SIX Financial Information identification string to field name

Syntax

D = tkidtofield(c,f,typ)

Description

D = tkidtofield(c,f,typ) converts SIX Financial Information field identification
strings to their corresponding field names. c is the SIX Financial Information connection
object, Fis the ID list, and typ denotes the fields. Options for the fields include market,
"market”; time and sales, "tass”; and history, "history". market fields are used
with getdata, tass fields are used with timeseries, and history fields are used with
the history.

Examples

When you retrieve output from SIX Financial Information, it appears as follows:

d =
XRF: [1x1 struct]
IL: [1x1 struct]

1: [1x1 struct]

M: [1x1 struct]

P: [1x1 struct]

The instrument IDs are found in d. I, and the pricing data is found in d.P. The output
for d.P.k appears like this:

ans =
"33,2,1"
"33,3,1"

"3,1,1"
"33,2,1"

5-303

5 Functions — Alphabetical List
P

"33,3,1°
"3,1,1"

Convert the field IDs in d.P .k to their field names with tkidtofield:
d.P.k = tkidtofield(c,d.P.k, "market®)

Load the file @tlkrs/tkfields.mat for a listing of the field names and their
corresponding field IDs.

See Also

tlkrs | history | tkfieldtoid | getdata | timeseries

5-304

yahoo

yahoo

Connect to Yahoo! Finance

Syntax

¢ = yahoo

Description

c = yahoo verifies that the URL http://download.finance.yahoo.com is accessible and
creates a Yahoo! connection object.

Examples

Connect to Yahoo! Finance

c = yahoo

CcC =
yahoo with properties:
url: “http://download.finance.yahoo.com*®

ip: [1
port: []

yahoo returns a successful connection ¢ with empty ip and port properties.

Close Yahoo! connection.

close(c)

Output Arguments

¢ — Yahoo! connection
connection object

5-305

http://download.finance.yahoo.com

5 Functions — Alphabetical List

Yahoo! connection, returned as a connection object.

See Also

builduniverse | close | fetch | get | isconnection | trpdata

5-306

builduniverse

builduniverse

Retrieve total return price data from Yahoo!

Syntax

data = builduniverse(c,s,fromdate,todate,period)

Description

data = builduniverse(c,s,fromdate, todate, period) retrieves total return
price series data for security S using the Yahoo! connection c. Retrieve data starting from
the date fromdate through todate using the periodicity period to denote the data
frequency.

Examples

Compute a Total Return Price Series
Connect to Yahoo! Finance.

c = yahoo;

Create a security list for Google.
s = {"G00G"};

Retrieve a daily total return price series for Google starting January 15, 2012 through
today. The total is calculated from prices, splits, and dividends.

fromdate = "1/15/2012";
todate = floor(now);

data = builduniverse(c,s,fromdate, todate);

Display the data.
data

data =

5-307

5 Functions — Alphabetical List
P

5-308

734885.00 1.00
734886 .00 1.01
734887 .00 1.02

data contains the numeric representation of the date in the first column and the total
return prices for Google in the second column.

Close the connection.

close(c)

Input Arguments

¢ — Yahoo! connection
connection object

Yahoo! connection, specified as a connection object created using yahoo.

s — Security list
string | cell array

Security list, specified as a string for one security or a cell array of strings for multiple
securities. Security strings must be in a format recognizable by the Yahoo! server.
Data Types: char | cell

fromdate — Beginning date
scalar | vector | matrix | string | cell array

Beginning date for the historical data, specified as a double scalar, double vector, double
matrix, string, or cell array of strings. You can specify dates in any format supported by
datestr and datenum that show a year, month, and day.

Data Types: double | char | cell

todate — End date
scalar | vector | matrix | string | cell array

End date for the historical data, specified as a double scalar, double vector, double
matrix, string, or cell array of strings. You can specify dates in any format supported by
datestr and datenum that show a year, month, and day.

Data Types: double | char | cell

period — Period

"d*® (default) | "w*

Period within a date range, specified as one of these enumerated strings. Values are:

Enumerated String Description
"d" Daily

w* Weekly
“m* Monthly

builduniverse

Data Types: char

Output Arguments

data — Total return price series
matrix

Total return price series, returned as an m-by-(n + 1) matrix, where m refers to the
number of records of data and n refers to the number of securities. The first column of
the matrix contains MATLAB date numbers and the remaining columns are the total
return prices for each security.

More About
Tips

+ Data providers report price, action, and dividend data differently. Verify that the data
returned by the bui lduniverse function contains the expected results.

See Also

fetch | trpdata

5-309

5 Functions — Alphabetical List
P

close

Close connections to Yahoo! Finance

Syntax

close(Connect)

Arguments

‘Connect Yahoo! connection object created with yahoo.

Description

close(Connect) closes the connection to the Yahoo! Finance.

See Also

yahoo

5-310

fetch

fetch

Request data from Yahoo! Finance

Syntax

fetch(c,s)

fetch(c,s,date)
fetch(c,s,fromdate,todate)
fetch(c,s, fromdate, todate,period)

0O 000

fetch(c,s,f)

fetch(c,s, f,date)
fetch(c,s,f,fromdate, todate)
fetch(c,s, f,fromdate, todate,period)

0O 0 00
Inn

Description

d = fetch(c,s) returns data for all fields from Yahoo! web site for the indicated
security.

Note: This function does not support retrieving multiple securities at once. You must
fetch a single security at a time.

d

fetch(c,s,date) returns all security data for the requested date.

d = fetch(c,s,fromdate, todate) returns security data for the date range
fromdate through todate.

d = fetch(c,s,fromdate, todate, period) returns security data with the indicated
period.

d

fetch(c,s,) returns data for the specified fields.

d

fetch(c,s, f,date) returns security data on the requested date.

5-311

5 Functions — Alphabetical List
P

d = fetch(c,s,T,fromdate, todate) returns security data for the date range
fromdate through todate.

d = fetch(c,s,T,fromdate,todate,period) returns security data with the
indicated period.

Examples

Retrieve Data for a Single Security
Connect to Yahoo! Finance.

c = yahoo;

Obtain the security data for IBM.

d fetch(c, "IBM™)

d =

Symbol: {"I1BM"}
Last: 173.84
Date: 735529.00
Time: 0.42

Change: 0.98
Open: 173.23
High: 173.84

Low: 172.95

Volume: 1132526.00

fetch returns a structure with the security name, last price, date, time, change, open
price, high price, low price, and volume.

Close Yahoo! connection.
close(c)
Retrieve Data on a Specified Date

Connect to Yahoo! Finance.

c = yahoo;

5-312

fetch

Obtain the security data for IBM with today’s date.

d = fetch(c, "I1BM",now)
d =

735528.00 174.42 174.75 172.63 172.86 7079500.00 172.86

Fetch returns the date, open price, high price, low price, closing price, volume, and
adjusted close price.

Close Yahoo! connection.

close(c)

Retrieve the Last Prices for a Set of Equities

Connect to Yahoo! Finance.

c = yahoo;

Obtain the last prices for the "ko", "pep”, and "mcd” equities.
FastFood = fetch(c,{"ko", "pep", "mcd"},"Last")

FastFood =
Last: [3x1 double]

fetch returns a structure with the last prices.

Display the last prices.
FastFood.Last
ans =

42 .96

45.71
23.70

Close Yahoo! connection.

close(c)
Retrieve a Closing Price on a Specified Date

Connect to Yahoo! Finance.

5-313

5 Functions — Alphabetical List
P

5-314

c = yahoo;
Obtain the closing price for the "ko™ equity on April 6, 2010.

ClosePrice = fetch(c, "ko","Close”, "Apr 6 2010%)

ClosePrice
734234 .00 54.29

fetch returns the date in the first column and the closing price in the second column.

Close Yahoo! connection.

close(c)

Retrieve a Closing Price with a Date Range

Connect to Yahoo! Finance.

c = yahoo;

Obtain the closing price for IBM from August 1, 1999 to August 25, 1999.

ClosePrice = fetch(c,"IBM","Close”,"08/01/99",708/25/99")

ClosePrice =
730357.00 122.37
730356.00 122.00
730355.00 124 .44
730352.00 121.75
730351.00 122.94

fetch returns the date in the first column and the closing price in the second column.

Close Yahoo! connection.

close(c)
Retrieve a Security Data with a Date Range

Connect to Yahoo! Finance.

c = yahoo;

fetch

Obtain data for IBM from February 1, 2000 through February 20, 2000.

d = fetch(c,"I1BM","2/1/2000","2/20/2000")

d =

730534.00 115.25 115.94 111.50 112.50 7673400.00 94.80
730533.00 116.50 118.87 115.75 116.75 5237500.00 98.38
730532.00 116.50 117.31 115.25 115.75 3966900.00 97.54
730531.00 115.87 117 .44 113.87 117.12 5177500.00 98.69

730530.00 116.00 116.37 114.50 116.06 4544000.00 97.80

fetch returns the date, open price, high price, low price, closing price, volume, and
adjusted close price in the columns. A row contains data for each trading day.

Close Yahoo! connection.

close(c)

Retrieve the Daily Volume

Connect to Yahoo! Finance.

c = yahoo;

Obtain the daily volume for IBM for the last 300 days.

d

fetch(c, "IBM", "Volume®,now-300,now-1,"d")

d

735528.00 7079500.00
735525.00 10548000.00
735524 .00 22358300.00
735523.00 6615300.00
735522 .00 3365100.00

Fetch returns the date in the first column and the volume in the second column.

Close Yahoo! connection.

close(c)
Retrieve Stock Dividend Data

Connect to Yahoo! Finance.

5-315

5 Functions — Alphabetical List
P

5-316

c = yahoo;

Obtain the cash dividend data for IBM for the last 300 days.

d = fetch(c, "I1BM",now-300,now-1,"v")
d =
735453.00 0.95
735362.00 0.95
735271.00 0.85

fetch returns the date in the first column and cash dividend in the second column.

Close Yahoo! connection.

close(c)

Input Arguments

¢ — Yahoo! connection
connection object

Yahoo! connection, specified as a connection object created using yahoo.

s — Security list
string | cell array

Security list, specified as a string for one security or a cell array of strings for more than
one security. Security strings must be in a format recognizable by the Yahoo! server.

Note: Retrieving historical data for multiple securities at one time is not supported for
Yahoo!. You can fetch historical data for a single security at a time.

Data Types: char | cell

date — Request date
string | serial date number

Request date, specified as a string or a serial date number indicating the date for the
requested data. If you enter today’s date, Fetch returns yesterday’s data.

fetch

Data Types: double | char

fromdate — Beginning date
scalar | vector | matrix | string | cell array

Beginning date for the historical data, specified as a double scalar, double vector, double
matrix, string, or cell array of strings. You can specify dates in any format supported by
datestr and datenum that show a year, month, and day.

Data Types: double | char | cell

todate — End date
scalar | vector | matrix | string | cell array

End date for the historical data, specified as a double scalar, double vector, double
matrix, string, or cell array of strings. You can specify dates in any format supported by
datestr and datenum that show a year, month, and day.

Data Types: double | char | cell

period — Period
string

Period within a date range, specified as a string. Possible values are:

+ "d":daily
* "w": weekly
* "m": monthly

* "v":dividends
Data Types: char

T — Request fields
string | cell array

Request fields, specified as a string or cell array of strings indicating the data fields for
which to retrieve data. A partial list of supported values for current market data are:

* "Symbol*
+ "Last”
+ "Date”

5-317

5 Functions — Alphabetical List
P

5-318

"Time"

Note: "Date” and "Time" are MATLAB date numbers. ("Time" is a fractional part
of a date number. For example, 0.5 = 12:00:00 PM.)

"Change*
"Open*
"High*"
"Low"
"Volume*®

A partial list of supported values for historical data are:

"Close”
"Date*
"High*
"Low"
"Open*
"Volume*®
"Adj Close"

For a complete list of supported values for market and historical data, see
yhfields._mat.

Data Types: char | cell

Output Arguments

d — Output data
structure | matrix

Output data, returned as a structure or double matrix containing the requested data
retrieved from Yahoo! Finance.

See Also

close | get | isconnection | yahoo

get

get

Retrieve properties of Yahoo! connection objects

Syntax

value get(Connect, "PropertyName®)
value = get(Connect)

Arguments

Connect Yahoo! connection object created with yahoo.

PropertyName (Optional) A MATLAB string or cell array of strings containing
property names. Currently the only property name recognized is
url”.

Description

value = get(Connect, "PropertyName®) returns the value of the specified
properties for the Yahoo! connection object.

value = get(Connect) returns a MATLAB structure where each field name is the
name of a property of Connect. Each field contains the value of the property.

Examples

Connect to a Yahoo! Finance:

(]
(]

yahoo

url: “http://download.finance.yahoo.com
ip: [1
port: []

5-319

5 Functions — Alphabetical List
P

5-320

Retrieve the URL of the connection:
get(c, “url™)

ans =

http://download. finance.yahoo.com

See Also

close | isconnection | fetch | yahoo

isconnection

isconnection

Determine if connections to Yahoo! Finance are valid

Syntax

X = isconnection(Connect)

Arguments

‘Connect ‘Yahoo! connection object created with yahoo.

Description

x = isconnection(Connect) returns X = 1 if the connection is a valid Yahoo!
connection, and X = O otherwise.

Examples

Connect to a Yahoo! Finance:
c = yahoo

Verify that the connection, c, is valid:

X = isconnection(c)
X =1
See Also

close | fetch | get | yahoo

5-321

5 Functions — Alphabetical List
P

5-322

trpdata

Total return price series data

Syntax

[prc,act,div] = trpdata(y,s,d1,d2,p)

Description

[prc,act,div] = trpdata(y,s,dl,d2,p), wherey is the Yahoo! connection handle,
S is the security string, d1 is the start date, d2 is the end date, and p is the periodicity
flag for Yahoo!, generates a total return price series. prc is the price, act is the action,
and div is the dividend returned in the total return price series.

More About
Tips

+ Data providers report price, action, and dividend data differently. Verify that the data
returned by the trpdata function contains the expected results.

